Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-23197303

RESUMO

RNA-directed DNA methylation is a small RNA-mediated epigenetic modification that contributes to transcriptional silencing of transposons and repetitive sequences in plants. We have conducted several forward genetic screens to identify factors required for RNA-directed DNA methylation and transcriptional gene silencing in Arabidopsis thaliana. Here, we review the findings from these screens and report on two new mutants, dms12 and dms13, that are defective in Pol V-specific subunits NRPE5 and NRPE9b. Cumulative results from genetic screens performed in our laboratory and those of other investigators have revealed that RNA-directed DNA methylation requires a complex transcriptional machinery comprising a number of plant-specific factors, many of which were functionally uncharacterized before being implicated in this pathway. Future challenges include unraveling the detailed mechanism and full range of functions of RNA-directed DNA methylation.


Assuntos
Arabidopsis/genética , Metilação de DNA/genética , Genes de Plantas/genética , Testes Genéticos , RNA de Plantas/metabolismo , Inativação Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-17381327

RESUMO

Recent work in Arabidopsis has revealed a plant-specific RNA polymerase, pol IV, that is specialized for RNA interference (RNAi)-mediated, chromatin-based gene silencing. Two functionally diversified pol IV complexes have been identified: pol IVa is required to produce or amplify the small RNA trigger, whereas pol IVb, together with the plant-specific SWI/SNF-like chromatin remodeling factor DRD1, acts downstream from small RNA formation to induce de novo cytosine methylation of homologous DNA by an unknown mechanism. Retrotransposon long terminal repeats (LTRs) and other unannotated sequences that encode small RNAs are prime targets for DRD1/pol IVb-mediated cytosine methylation. In drd1 and pol IVb mutants, silent LTRs in euchromatin can be derepressed, resulting in enhanced transcription of adjacent genes or intergenic regions. In addition to mediating de novo methylation, some evidence suggests that DRD1 and pol IVb are also involved in a reciprocal process of active demethylation, perhaps in conjunction with DNA glycosylase domain-containing proteins such as ROS1. We speculate that DRD1/pol IV-dependent methylation/demethylation evolved in the plant kingdom as a means to facilitate rapid, reversible changes in gene expression, which might have adaptive significance for immobile plants growing in unpredictable environments.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Ilhas de CpG , DNA de Plantas/química , DNA de Plantas/genética , DNA de Plantas/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Inativação Gênica , Humanos , Modelos Biológicos , Interferência de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequências Repetidas Terminais
3.
EMBO J ; 21(3): 461-9, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11823438

RESUMO

Tobacco endogenous pararetroviruses (TEPRVs) represent the first virus-derived repetitive sequence family found in plants. The sequence conservation of TEPRVs and the lack of an exogenous form of the virus suggest that TEPRVs serve a beneficial function, perhaps by furnishing virus resistance via homologous sequence interactions. This hypothesis is supported by the observation that TEPRVs are methylated and negligibly transcribed. Moreover, transgenes driven by the TEPRV enhancer are silenced and methylated when introduced into tobacco, but remain active and unmethylated in non-host species devoid of sequences homologous to TEPRVs. In transgenic Arabidopsis, the TEPRV enhancer is active primarily in shoot meristems. This suggests that the virus giving rise to TEPRVs could infect germ cell precursors, a prerequisite for meiotically heritable insertions into host chromosomes. The copy number, organization and methylation of TEPRVs in tetraploid tobacco and one of its diploid ancestors, Nicotiana sylvestris, the presumed original host for the virus, have remained constant since polyploid formation. The remarkable conservation of these features in two independently evolving species further supports a role for TEPRVs in viral immunity.


Assuntos
Genoma de Planta , Nicotiana/genética , Sequências Repetitivas de Ácido Nucleico , Retroviridae , Arabidopsis/genética , Plantas Geneticamente Modificadas , Nicotiana/virologia , Integração Viral
4.
EMBO J ; 5(9): 2073-2077, 1986 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16453703

RESUMO

We have used in situ hybridization to determine the sites of insertion of Agrobacterium rhizogenes Ri T-DNA in the chromosomes of Crepis capillaris (2n = 6) transformed roots. Four transformed root lines were obtained by infecting Crepis stem segments with A. rhizogenes. Southern hybridization analysis indicated that each root line was the result of one or more independent T-DNA insertion events. In two root lines, one copy of T-DNA was present; the other two root lines each contained two copies of T-DNA. To localize these T-DNA inserts on Crepis chromosomes, metaphase spreads were perpared from each root line, and hybridized in situ to a biotinlabeled T-DNA probe. The results indicated that T-DNA was present in a different chromosomal location in each root line, and that each chromosome had been a target for T-DNA insertion at least once. In the root lines containing two T-DNA inserts, two patterns of integration were observed: in one case the T-DNAs were present on separate chromosomes; in the other case the two T-DNAs were close together (but not tandemly arranged) on a single chromosome. A comparison of these results and those obtained previously for a fifth Crepis-transformed root line demostrated that Ri T-DNA does not insert preferentially into a particlar chromosomal location.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA