Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 564: 111863, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690170

RESUMO

Granulosa cells (GCs) of ovarian follicles prefer glucose as a metabolic substrate for growth and maturation. Disruption of glucose utilization via the hexosamine biosynthesis pathway (HBP) impairs O-linked N-acetylglucosaminylation (O-GlcNAcylation) and inhibits proliferation of bovine GCs of both small (3-5 mm) and large (>8.5 mm) antral follicles. Knowing that 2-5% of all glucose in cells is utilized via the HBP, the aim of this study was to characterize glucose metabolism in bovine GCs and determine the impact of the HBP and O-GlcNAcylation on metabolic activity. The GCs were initially cultured in serum-containing medium to confluency and then sub-cultured in serum-free medium in 96 well plates (n = 10 ovary pairs). The cells were exposed to vehicle and inhibitors of the HBP and O-GlcNAcylation for 24 h. Extracellular acidification rate (ECAR; an indicator of glycolysis) and oxygen consumption rate (OCR; an indicator of oxidative phosphorylation) of the GCs were measured using a Seahorse xFe96 Analyzer, including the implementation of glycolytic and mitochondrial stress tests. GCs from small antral follicles exhibited overall greater metabolic activity than GCs from large antral follicles as evidenced by increased ECAR and OCR. Inhibition of the HBP and O-GlcNAcylation had no effect on the metabolic activity of GCs from either type of follicle. The glycolytic stress test indicated that GCs from both types of follicles possessed additional glycolytic capacity; but again, inhibition of the HBP and O-GlcNAcylation did not affect this. Interestingly, inhibition of cellular respiration by 2-Deoxy-D-glucose impaired OCR only in GCs from small antral follicles, but exposure to the mitochondrial stress test had no effect. Conversely, in GCs from large antral follicles, oxidative metabolism was impaired by the mitochondrial stress test and was accompanied by a concomitant increase in glycolytic metabolism. Immunodetection of glycolytic enzymes revealed that phosphofructokinase expression is increased in GCs of small antral follicles compared to large follicles. Inhibition of O-GlcNAcylation impaired the expression of hexokinase only in GCs of small antral follicles. Inhibition of O-GlcNAcylation also impaired the expression of phosphofructokinase, pyruvate kinase and pyruvate dehydrogenase in GCs of both types of follicles, but had no effect on the expression of lactate dehydrogenase. The results indicate that GCs of small antral follicles possess greater aerobic glycolytic capacity than GCs from large antral follicles; but disruption of the HBP and O-GlcNAcylation has little to no impact on metabolic activity.


Assuntos
Células da Granulosa , Hexosaminas , Feminino , Animais , Bovinos , Hexosaminas/farmacologia , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Glucose/metabolismo , Fosfofrutoquinases/metabolismo
2.
J Anim Sci ; 100(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772748

RESUMO

Intraovarian growth factors play a vital role in influencing the fate of ovarian follicles. They affect proliferation and apoptosis of granulosa cells (GC) and can influence whether small antral follicles continue their growth or undergo atresia. Transforming growth factor-alpha (TGFα), an oocyte-derived growth factor, is thought to regulate granulosa cell function; yet its investigation has been largely overshadowed by emerging interest in TGF-beta superfamily members, such as bone morphogenetic proteins (BMP) and anti-Mullerian hormone (AMH). Here, effects of TGFα on bovine GC proliferation, intracellular signaling, and cytokine-induced apoptosis were evaluated. Briefly, all small antral follicles (3-5 mm) from slaughterhouse specimens of bovine ovary pairs were aspirated and the cells were plated in T25 flasks containing DMEM/F12 medium, 10% FBS, and antibiotic-antimycotic, and incubated at 37 °C in 5% CO2 for 3 to 4 d. Once confluent, the cells were sub-cultured for experiments (in 96-, 12-, or 6-well plates) in serum-free conditions (DMEM/F12 medium with ITS). Exposure of the bGC to TGFα (10 or 100 ng/mL) for 24 h stimulated cell proliferation compared to control (P < 0.05; n = 7 ovary pairs). Proliferation was accompanied by a concomitant increase in mitogen-activated protein kinase (MAPK) signaling within 2 h of treatment, as evidenced by phosphorylated ERK1/2 expression (P < 0.05, n = 3 ovary pairs). These effects were entirely negated, however, by the MAPK inhibitor, U0126 (10uM, P < 0.05). Additionally, prior exposure of the bGC to TGFα (100 ng/mL) failed to prevent Fas Ligand (100 ng/mL)-induced apoptosis, as measured by caspase 3/7 activity (P < 0.05, n = 7 ovary pairs). Collectively, the results indicate TGFα stimulates proliferation of bGC from small antral follicles via a MAPK/ERK-mediated mechanism, but this action alone fails to prevent apoptosis, suggesting that TGFα may be incapable of promoting their persistence in follicles during the process of follicular selection/dominance.


A variety of hormones regulate ovarian function in the cow, thus influencing fertility. One such hormone, transforming growth factor-alpha, TGFα, is expressed by the oocyte (egg) of the bovine ovary; yet little other information about the actions of this molecule on ovarian cells is available. In this study, we determined that although TGFα directly stimulates growth and proliferation of cells of the bovine ovary, and does so via specific signaling mechanisms, it fails to prevent immune-mediated programmed cell death. The latter observation diminishes the importance of TGFα relative to other oocyte-derived hormones in terms of ovarian function and overall animal fertility.


Assuntos
Folículo Ovariano , Fator de Crescimento Transformador alfa , Animais , Hormônio Antimülleriano/metabolismo , Bovinos , Feminino , Células da Granulosa/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Oócitos , Folículo Ovariano/fisiologia , Fator de Crescimento Transformador alfa/metabolismo , Fator de Crescimento Transformador alfa/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
3.
Biol Reprod ; 104(4): 914-923, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550377

RESUMO

Glucose is a preferred energy substrate for metabolism by bovine granulosa cells (GCs). O-linked N-acetylglucosaminylation (O-GlcNAcylation), is a product of glucose metabolism that occurs as the hexosamine biosynthesis pathway (HBP) shunts O-GlcNAc sugars to serine and threonine residues of proteins. O-GlcNAcylation through the HBP is considered a nutrient sensing mechanism that regulates many cellular processes. Yet little is known of its importance in GCs. Here, O-GlcNAcylation in GCs and its effects on GC proliferation were determined. Bovine ovaries from a slaughterhouse, staged to the mid-to-late estrous period were used. Follicular fluid and GCs were aspirated from small (3-5 mm) and large (>10 mm) antral follicles. Freshly isolated GCs of small follicles exhibited greater expression of O-GlcNAcylation and O-GlcNAc transferase (OGT) than large follicles. Less glucose and more lactate was detectable in the follicular fluid of small versus large follicles. Culture of GCs revealed that inhibition of the HBP via the glutamine fructose-6-phosphate aminotransferase inhibitor, DON (50 µM), impaired O-GlcNAcylation and GC proliferation, regardless of follicle size. Direct inhibition of O-GlcNAcylation via the OGT inhibitor, OSMI-1 (50 µM), also prevented proliferation, but only in GCs of small follicles. Augmentation of O-GlcNAcylation via the O-GlcNAcase inhibitor, Thiamet-G (2.5 µM), had no effect on GC proliferation, regardless of follicle size. The results indicate GCs of bovine antral follicles undergo O-GlcNAcylation, and O-GlcNAcylation is associated with alterations of glucose and lactate in follicular fluid. Disruption of O-GlcNAcylation impairs GC proliferation. Thus, the HBP via O-GlcNAcylation constitutes a plausible nutrient-sensing pathway influencing bovine GC function and follicular growth.


Assuntos
Acetilglucosamina/metabolismo , Células da Granulosa/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Animais , Bovinos , Tamanho Celular , Células Cultivadas , Feminino , Glucose/metabolismo , Ácido Láctico/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA