Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 42(21): 4326-4341, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35477905

RESUMO

Decades of hippocampal neurophysiology research have linked the hippocampal theta rhythm to voluntary movement. A consistent observation has been a robust correlation between the amplitude (or power) and frequency of hippocampal theta and running speed. Recently, however, it has been suggested that acceleration, not running speed, is the dominating influence on theta frequency. There is an inherent interdependence among these two variables, as acceleration is the rate of change in velocity. Therefore, we investigated theta frequency and amplitude of the local-field potential recorded from the stratum pyramidale, stratum radiatum, and stratum lacunosum moleculare of the CA1 subregion, considering both speed and acceleration in tandem as animals traversed a circular task or performed continuous alternation. In male and female rats volitionally controlling their own running characteristics, we found that running speed carries nearly all of the variability in theta frequency and power, with a minute contribution from acceleration. These results contradicted a recent publication using a speed-clamping task, where acceleration and movement are compelled through the use of a bottomless car (Kropff et al., 2021a). Therefore, we reanalyzed the speed-clamping data replicating a transient increase in theta frequency during acceleration. Compared with track running rats, the speed-clamped animals exhibited lower velocities and acceleration values but still showed a stronger influence of speed on theta frequency relative to acceleration. As navigation is the integration of many sensory inputs that are not necessarily linearly related, we offer caution in making absolute claims regarding hippocampal physiology from correlates garnered from a single behavioral repertoire.SIGNIFICANCE STATEMENT A long-standing, replicable observation has been the increase of hippocampal theta power and frequency with increasing running speed. Recently, however, an experimental approach that clamps the running speed of an animal has suggested that acceleration is the dominant influence. Therefore, we analyzed data from freely behaving rats as well as data from the speed-clamping experiment. In unrestrained behavior, speed remains the dominant behavioral correlate to theta amplitude and frequency. Positive acceleration in the speed-clamp experiment induced a transient increase in theta frequency and power. However, speed retained the dominant influence over theta frequency, changing with velocity in both acceleration and deceleration conditions.


Assuntos
Hipocampo , Ritmo Teta , Aceleração , Animais , Feminino , Hipocampo/fisiologia , Masculino , Ratos , Ritmo Teta/fisiologia
2.
Hippocampus ; 30(8): 776-793, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30216593

RESUMO

Many of the foundational theoretical ideas in the field of learning and memory are traced to Donald Hebb. Examination of these ideas and their evolution suggest that Karl Lashley might have significantly influenced their development. Here, we discuss the relationship between Hebb and Lashley, and the parallels between them. Many now investigating the neurobiological basis of memory may be unaware both of Hebb's original descriptions, and the likely substantial contributions of Lashley. Many of their concerns remain with us today, and by clarifying the history we hope to strengthen the foundations of our field.


Assuntos
Neurologia/história , História do Século XIX , História do Século XX
3.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31324673

RESUMO

Local field potential (LFP) oscillations are primarily shaped by the superposition of postsynaptic currents. Hippocampal LFP oscillations in the 25- to 50-Hz range ("slow γ") are proposed to support memory retrieval independent of other frequencies. However, θ harmonics extend up to 48 Hz, necessitating a study to determine whether these oscillations are fundamentally the same. We compared the spectral analysis methods of wavelet, ensemble empirical-mode decomposition (EEMD), and Fourier transform. EEMD, as previously applied, failed to account for the θ harmonics. Depending on analytical parameters selected, wavelet may convolve over high-order θ harmonics due to the variable time-frequency atoms, creating the appearance of a broad 25- to 50-Hz rhythm. As an illustration of this issue, wavelet and EEMD depicted slow γ in a synthetic dataset that only contained θ and its harmonics. Oscillatory transience cannot explain the difference in approaches as Fourier decomposition identifies ripples triggered to epochs of high-power, 120- to 250-Hz events. When Fourier is applied to high power, 25- to 50-Hz events, only θ harmonics are resolved. This analysis challenges the identification of the slow γ rhythm as a unique fundamental hippocampal oscillation. While there may be instances in which slow γ is present in the rat hippocampus, the analysis presented here shows that unless care is exerted in the application of EEMD and wavelet techniques, the results may be misleading, in this case misrepresenting θ harmonics. Moreover, it is necessary to reconsider the characteristics that define a fundamental hippocampal oscillation as well as theories based on multiple independent γ bands.


Assuntos
Ondas Encefálicas , Hipocampo/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Feminino , Masculino , Ratos
4.
Neurobiol Learn Mem ; 162: 36-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31125611

RESUMO

In order to optimize outcomes in the face of uncertainty, one must recall past experiences and extrapolate to the future by assigning values to different choice outcomes. This behavior requires an interplay between memory and reward valuation, necessitating communication across many brain regions. At the anatomical nexus of this interplay is the perirhinal cortex (PRC). The PRC is densely connected to the amygdala and orbital frontal cortex, regions that have been implicated in reward-based decision making, as well as the hippocampus. Thus, the PRC could serve as a hub for integrating memory, reward, and prediction. The PRC's role in value-based decision making, however, has not been empirically examined. Therefore, we tested the role of the PRC in a spatial delay discounting task, which allows rats to choose between a 1-s delay for a small food reward and a variable delay for a large food reward, with the delay to the large reward increasing after choice of each large reward and decreasing after each small reward. The rat can therefore adjust the delay by consecutively choosing the same reward or stabilize the delay by alternating between sides. The latter has been shown to occur once the 'temporal cost' of the large reward is established and is a decision-making process termed 'exploitation'. When the PRC was bilaterally inactivated with the GABA(A) agonist muscimol, rats spent fewer trials successfully exploiting to maintain a fixed delay compared to the vehicle control condition. Moreover, PRC inactivation resulted in an increased number of vicarious trial and error (VTE) events at the choice point, where rats had to decide between the two rewards. These behavioral patterns suggest that the PRC is critical for maintaining stability in linking a choice to a reward outcome in the face of a variable cost.


Assuntos
Comportamento de Escolha/fisiologia , Desvalorização pelo Atraso/fisiologia , Córtex Perirrinal/fisiologia , Comportamento Espacial/fisiologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Desvalorização pelo Atraso/efeitos dos fármacos , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Córtex Perirrinal/efeitos dos fármacos , Ratos , Comportamento Espacial/efeitos dos fármacos , Fatores de Tempo
5.
J Neurophysiol ; 121(2): 444-458, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517044

RESUMO

Oscillations in the hippocampal local field potential at theta and gamma frequencies are prominent during awake behavior and have demonstrated several behavioral correlates. Both oscillations have been observed to increase in amplitude and frequency as a function of running speed. Previous investigations, however, have examined the relationship between speed and each of these oscillation bands separately. Based on energy cascade models where "…perturbations of slow frequencies cause a cascade of energy dissipation at all frequency scales" (Buzsaki G. Rhythms of the Brain, 2006), we hypothesized that cross-frequency interactions between theta and gamma should increase as a function of speed. We examined these relationships across multiple layers of the CA1 subregion, which correspond to synaptic zones receiving different afferents. Across layers, we found a reliable correlation between the power of theta and the power of gamma, indicative of an amplitude-amplitude relationship. Moreover, there was an increase in the coherence between the power of gamma and the phase of theta, demonstrating increased phase-amplitude coupling with speed. Finally, at higher velocities, phase entrainment between theta and gamma increases. These results have important implications and provide new insights regarding how theta and gamma are integrated for neuronal circuit dynamics, with coupling strength determined by the excitatory drive within the hippocampus. Specifically, rather than arguing that different frequencies can be attributed to different psychological processes, we contend that cognitive processes occur across multiple frequency bands simultaneously with organization occurring as a function of the amount of energy iteratively propagated through the brain. NEW & NOTEWORTHY Often, the theta and gamma oscillations in the hippocampus have been believed to be a consequence of two marginally overlapping phenomena. This perspective, however, runs counter to an alternative hypothesis in which a slow-frequency, high-amplitude oscillation provides energy that cascades into higher frequency, lower amplitude oscillations. We found that as running speed increases, all measures of cross-frequency theta-gamma coupling intensify, providing evidence in favor of the energy cascade hypothesis.


Assuntos
Ritmo Gama , Hipocampo/fisiologia , Animais , Potenciais Evocados , Feminino , Masculino , Modelos Neurológicos , Ratos , Ritmo Teta
6.
Hippocampus ; 26(10): 1328-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273259

RESUMO

The mechanisms governing how the hippocampus selects neurons to exhibit place fields are not well understood. A default assumption in some previous studies was the uniform random draw with replacement (URDWR) model, which, theoretically, maximizes spatial "pattern separation", and predicts a Poisson distribution of the numbers of place fields expressed by a given cell per unit area. The actual distribution of mean firing rates exhibited by a population of hippocampal neurons, however, is approximately exponential or log-normal in a given environment and these rates are somewhat correlated across multiple places, at least under some conditions. The advantage of neural activity-dependent immediate-early gene (IEG) analysis, as a proxy for electrophysiological recording, is the ability to obtain much larger samples of cells, even those whose activity is so sparse that they are overlooked in recording studies. Thus, a more accurate representation of the activation statistics can potentially be achieved. Some previous IEG studies that examined behavior-driven IEG expression in CA1 appear to support URDWR. There was, however, in some of the same studies, an under-recruitment of dentate gyrus granule cells, indicating a highly skewed excitability distribution, which is inconsistent with URDWR. Although it was suggested that this skewness might be related to increased excitability of recently generated granule cells, we show here that CA1, CA3, and subiculum also exhibit cumulative under-recruitment of neurons. Thus, a highly skewed excitability distribution is a general principle common to all major hippocampal subfields. Finally, a more detailed analysis of the frequency distributions of IEG intranuclear transcription foci suggests that a large fraction of hippocampal neurons is virtually silent, even during sleep. Whether the skewing of the excitability distribution is cell-intrinsic or a network phenomenon, and the degree to which this excitability is fixed or possibly time-varying are open questions for future studies. © 2016 Wiley Periodicals, Inc.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Potenciais de Ação , Animais , Eletrodos Implantados , Genes Precoces , Hibridização in Situ Fluorescente , Masculino , Ratos Long-Evans
7.
Hippocampus ; 22(10): 2032-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22987680

RESUMO

The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, three-dimensional objects. Rats in the present study were exposed to three-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions, the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated "object fields" (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats' previous experience with the objects. Together, these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment; but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Reconhecimento Psicológico/fisiologia , Recompensa , Animais , Mapeamento Encefálico/métodos , Masculino , Ratos , Ratos Endogâmicos F344
8.
Brain Res ; 1018(2): 247-56, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15276885

RESUMO

Prior studies have shown that the vestibular system contributes to adjusting respiratory muscle activity during changes in posture, and have suggested that portions of the medial medullary reticular formation (MRF) participate in generating vestibulo-respiratory responses. However, there was previously no direct evidence to demonstrate that cells in the MRF relay vestibular signals monosynaptically to respiratory motoneurons. The present study tested the hypothesis that the firing of MRF neurons whose axons could be antidromically activated from the vicinity of diaphragm motoneurons was modulated by whole-body rotations in vertical planes that stimulated vestibular receptors, as well as by electrical current pulses delivered to the vestibular nerve. In total, 171 MRF neurons that projected to the C5-C6 ventral horn were studied; they had a conduction velocity of 34+/-15 (standard deviation) m/sec. Most (135/171 or 79%) of these MRF neurons lacked spontaneous firing. Of the subpopulation of units with spontaneous discharges, only 3 of 20 cells responded to vertical rotations up to 10 degrees in amplitude, whereas the activity of 8 of 14 neurons was affected by electrical stimulation of the vestibular nerve. These data support the hypothesis that the MRF participates in generating vestibulo-respiratory responses, but also suggest that some neurons in this region have other functions.


Assuntos
Células do Corno Anterior/fisiologia , Mapeamento Encefálico , Diafragma/inervação , Bulbo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Formação Reticular/fisiologia , Vestíbulo do Labirinto/fisiologia , Análise de Variância , Animais , Células do Corno Anterior/citologia , Gatos , Estimulação Elétrica , Bulbo/citologia , Neurônios Motores/fisiologia , Vias Neurais/citologia , Postura , Formação Reticular/citologia , Rotação , Nervo Vestibular/fisiologia , Vestíbulo do Labirinto/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA