Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Host Microbe ; 32(5): 639-650, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723604

RESUMO

There is rapidly growing awareness of microbiome assembly and function in early-life gut health. Although many factors, such as antibiotic use and highly processed diets, impinge on this process, most research has focused on people residing in high-income countries. However, much of the world's population lives in low- and middle-income countries (LMICs), where, in addition to erratic antibiotic use and suboptimal diets, these groups experience unique challenges. Indeed, many children in LMICs are infected with intestinal helminths. Although helminth infections are strongly associated with diverse developmental co-morbidities and induce profound microbiome changes, few studies have directly examined whether intersecting pathways between these components of the holobiont shape health outcomes in early life. Here, we summarize microbial colonization within the first years of human life, how helminth-mediated changes to the gut microbiome may affect postnatal growth, and why more research on this relationship may improve health across the lifespan.


Assuntos
Microbioma Gastrointestinal , Helmintíase , Helmintos , Microbioma Gastrointestinal/fisiologia , Humanos , Helmintos/fisiologia , Animais , Lactente , Enteropatias Parasitárias
2.
Nat Commun ; 14(1): 662, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750571

RESUMO

The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Citometria de Fluxo , Polissacarídeos/metabolismo , Prebióticos , Oligossacarídeos , Carboidratos da Dieta/metabolismo
3.
iScience ; 26(2): 106007, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36798434

RESUMO

Bacteriophages, viruses specific to bacteria, coexist with their bacterial hosts with limited diversity fluctuations in the guts of healthy individuals where they replicate mostly via lysogenic replication. This favors 'piggy-back-the-winner' over 'kill-the-winner' dynamics which are driven by lytic bacteriophage replication. Revisiting the deep-viral sequencing data of a healthy individual sampled over 2.4 years, we explore how these dynamics occur. Prophages found in assembled bacterial metagenomes were also found extra-cellularly, as induced phage particles (iPPs), likely derived from prophage activation. These iPPs were diverse and continually present in low abundance, relative to the highly abundant but less diverse lytic phage population. The continuous detection of low levels of iPPs suggests that spontaneous induction regularly occurs in this healthy individual, possibly allowing prophages to maintain their ability to replicate and avoiding degradation and loss from the gut microbiota.

4.
Gut Microbes ; 15(1): 2180317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36823031

RESUMO

The composition of the intestinal bacterial community is well described, but recent research suggests that the metabolism of these bacteria plays a larger role in health than which species are present. One fundamental aspect of gut bacterial metabolism that remains understudied is bacterial replication. Indeed, there exist few techniques which can identify actively replicating gut bacteria. In this study, we aimed to address this gap by adapting 5-ethynyl-2'-deoxyuridine (EdU) click chemistry (EdU-click), a metabolic labeling method, coupled with fluorescence-activated cell sorting and sequencing (FACS-Seq) to characterize replicating gut bacteria. We first used EdU-click with human gut bacterial isolates and show that many of them are amenable to this technique. We then optimized EdU-click and FACS-Seq for murine fecal bacteria and reveal that Prevotella UCG-001 and Ileibacterium are enriched in the replicating fraction. Finally, we labeled the actively replicating murine gut bacteria during exposure to cell wall-specific antibiotics in vitro. We show that regardless of the antibiotic used, the actively replicating bacteria largely consist of Ileibacterium, suggesting the resistance of this taxon to perturbations. Overall, we demonstrate how combining EdU-click and FACSeq can identify the actively replicating gut bacteria and their link with the composition of the whole community in both homeostatic and perturbed conditions. This technique will be instrumental in elucidating in situ bacterial replication dynamics in a variety of other ecological states, including colonization and species invasion, as well as for investigating the relationship between the replication and abundance of bacteria in complex communities.


The bacteria that live in our guts are known to influence our intestinal and overall health. Though we know a lot about which kinds of bacteria are in our guts, we still don't know much about which bacteria are actually alive and growing. This is important to know, because bacteria that are growing, or replicating, are more likely to impact our health than bacteria which are not replicating. Our research group aimed to address this issue by developing a new technique that can identify which gut bacteria are actively replicating. We first tested this technique on specific gut bacteria, and then we made sure the technique worked when it was used on the gut bacteria of mice. By using this technique, we identified several types of mouse gut bacteria that were actively replicating. We also demonstrated one possible application of this technique by using it to identify mouse gut bacteria that were able to replicate after they were grown with antibiotics. Overall, we have introduced a new technique to identify replicating gut bacteria and show how it can be used to increase our knowledge on which bacteria are growing in the gut. This technique will help us identify which bacteria may be more important to our health due to their active growth.


Assuntos
Química Click , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Química Click/métodos , Desoxiuridina/química , Desoxiuridina/metabolismo , Bactérias/metabolismo
5.
Gut Microbes ; 14(1): 2096993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844189

RESUMO

In vitro fermentation systems allow for the investigation of gut microbial communities with precise control of various physiological parameters while decoupling confounding factors from the human host. Current systems, such as the SHIME and Robogut, are large in footprint, lack multiplexing, and have low experimental throughput. Alternatives which address these shortcomings, such as the Mini Bioreactor Array system, are often reliant on expensive specialized equipment, which hinders wide replication across labs. Here, we present the Mini Colon Model (MiCoMo), a low-cost, benchtop multi-bioreactor system that simulates the human colon environment with physiologically relevant conditions. The device consists of triplicate bioreactors working independently of an anaerobic chamber and equipped with automated pH, temperature, and fluidic control. We conducted 14-d experiments and found that MiCoMo was able to support a stable complex microbiota community with a Shannon Index of 3.17 ± 0.65, from individual fecal samples after only 3-5 d of inoculation. MiCoMo also retained inter-sample microbial differences by developing closely related communities unique to each donor, while maintaining both minimal variations between replicate reactors (average Bray-Curtis similarity 0.72 ± 0.13) andday-to-day variations (average Bray-Curtis similarity 0.81±0.10) after this short stabilization period. Together, these results establish MiCoMo as an accessible system for studying gut microbial communities with high throughput and multiplexing capabilities.


Assuntos
Microbioma Gastrointestinal , Microbiota , Reatores Biológicos , Colo , Fezes , Humanos , RNA Ribossômico 16S
6.
Microbiome ; 10(1): 105, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35799219

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBDs) including Crohn's disease (CD) and ulcerative colitis (UC) are characterized by chronic and debilitating gut inflammation. Altered bacterial communities of the intestine are strongly associated with IBD initiation and progression. The gut virome, which is primarily composed of bacterial viruses (bacteriophages, phages), is thought to be an important factor regulating and shaping microbial communities in the gut. While alterations in the gut virome have been observed in IBD patients, the contribution of these viruses to alterations in the bacterial community and heightened inflammatory responses associated with IBD patients remains largely unknown. RESULTS: Here, we performed in vivo microbial cross-infection experiments to follow the effects of fecal virus-like particles (VLPs) isolated from UC patients and healthy controls on bacterial diversity and severity of experimental colitis in human microbiota-associated (HMA) mice. Shotgun metagenomics confirmed that several phages were transferred to HMA mice, resulting in treatment-specific alterations in the gut virome. VLPs from healthy and UC patients also shifted gut bacterial diversity of these mice, an effect that was amplified during experimental colitis. VLPs isolated from UC patients specifically altered the relative abundance of several bacterial taxa previously implicated in IBD progression. Additionally, UC VLP administration heightened colitis severity in HMA mice, as indicated by shortened colon length and increased pro-inflammatory cytokine production. Importantly, this effect was dependent on intact VLPs. CONCLUSIONS: Our findings build on recent literature indicating that phages are dynamic regulators of bacterial communities in the gut and implicate the intestinal virome in modulating intestinal inflammation and disease. Video Abstract.


Assuntos
Bacteriófagos , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Bactérias/genética , Bacteriófagos/genética , Colite/terapia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/terapia , Inflamação , Doenças Inflamatórias Intestinais/microbiologia , Camundongos
9.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161260

RESUMO

Individuals who are minoritized as a result of race, sexual identity, gender, or socioeconomic status experience a higher prevalence of many diseases. Understanding the biological processes that cause and maintain these socially driven health inequities is essential for addressing them. The gut microbiome is strongly shaped by host environments and affects host metabolic, immune, and neuroendocrine functions, making it an important pathway by which differences in experiences caused by social, political, and economic forces could contribute to health inequities. Nevertheless, few studies have directly integrated the gut microbiome into investigations of health inequities. Here, we argue that accounting for host-gut microbe interactions will improve understanding and management of health inequities, and that health policy must begin to consider the microbiome as an important pathway linking environments to population health.


Assuntos
Microbioma Gastrointestinal , Disparidades nos Níveis de Saúde , Doença , Saúde , Humanos , Saúde Mental , Publicações
10.
Cell Host Microbe ; 29(5): 678-680, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984273

RESUMO

The human gut virome has become increasingly associated with health and disease. In this issue of Cell Host & Microbe, Mangalea et al. (2021) find differences in viromes of individuals at risk for rheumatoid arthritis (RA), suggesting that phages may play a role in RA and provide a path for biomarker development.


Assuntos
Artrite Reumatoide , Bacteriófagos , Humanos
11.
Viruses ; 13(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799646

RESUMO

Many bacteria carry bacteriophages (bacterial viruses) integrated in their genomes in the form of prophages, which replicate passively alongside their bacterial host. Environmental conditions can lead to prophage induction; the switching from prophage replication to lytic replication, that results in new bacteriophage progeny and the lysis of the bacterial host. Despite their abundance in the gut, little is known about what could be inducing these prophages. We show that several medications, at concentrations predicted in the gut, lead to prophage induction of bacterial isolates from the human gut. We tested five medication classes (non-steroidal anti-inflammatory, chemotherapy, mild analgesic, cardiac, and antibiotic) for antimicrobial activity against eight prophage-carrying human gut bacterial representative isolates in vitro. Seven out of eight bacteria showed signs of growth inhibition in response to at least one medication. All medications led to growth inhibition of at least one bacterial isolate. Prophage induction was confirmed in half of the treatments showing antimicrobial activity. Unlike antibiotics, host-targeted medications led to a species-specific induction of Clostridium beijerinckii, Bacteroides caccae, and to a lesser extent Bacteroides eggerthii. These results show how common medication consumption can lead to phage-mediated effects, which in turn would alter the human gut microbiome through increased prophage induction.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Lisogenia/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Ativação Viral/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bacteriófagos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos
12.
Gut Microbes ; 13(1): 1-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779505

RESUMO

Changes in bacterial diversity in the human gut have been associated with many conditions, despite not always reflecting changes in bacterial activity. Methods linking bacterial identity to function are needed for improved understanding of how bacterial communities adapt and respond to their environment, including the gut. Here, we optimized bioorthogonal non-canonical amino acid tagging (BONCAT) for the gut microbiota and combined it with fluorescently activated cell sorting and sequencing (FACS-Seq) to identify the translationally active members of the community. We then used this novel technique to compare with other bulk community measurements of activity and viability: relative nucleic acid content and membrane damage. The translationally active bacteria represent about half of the gut microbiota, and are not distinct from the whole community. The high nucleic acid content bacteria also represent half of the gut microbiota, but are distinct from the whole community and correlate with the damaged subset. Perturbing the community with xenobiotics previously shown to alter bacterial activity but not diversity resulted in stronger changes in the distinct physiological fractions than in the whole community. BONCAT is a suitable method to probe the translationally active members of the gut microbiota, and combined with FACS-Seq, allows for their identification. The high nucleic acid content bacteria are not necessarily the protein-producing bacteria in the community; thus, further work is needed to understand the relationship between nucleic acid content and bacterial metabolism in the human gut. Considering physiologically distinct subsets of the gut microbiota may be more informative than whole-community profiling.


Assuntos
Aminoácidos/metabolismo , Bactérias/metabolismo , Microbioma Gastrointestinal , Ácidos Nucleicos/metabolismo , Biossíntese de Proteínas , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Biodiversidade , DNA Bacteriano , Fezes/microbiologia , Citometria de Fluxo/métodos , Humanos , RNA Ribossômico 16S , Análise de Sequência de DNA , Análise de Célula Única
13.
Viruses ; 13(2)2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670028

RESUMO

Antibiotic resistance causes around 700,000 deaths a year worldwide. Without immediate action, we are fast approaching a post-antibiotic era in which common infections can result in death. Pseudomonas aeruginosa is the leading cause of nosocomial infection and is also one of the three bacterial pathogens in the WHO list of priority bacteria for developing new antibiotics against. A viable alternative to antibiotics is to use phages, which are bacterial viruses. Yet, the isolation of phages that efficiently kill their target bacteria has proven difficult. Using a combination of phages and antibiotics might increase treatment efficacy and prevent the development of resistance against phages and/or antibiotics, as evidenced by previous studies. Here, in vitro populations of a Pseudomonas aeruginosa strain isolated from a burn patient were treated with a single phage, a mixture of two phages (used simultaneously and sequentially), and the combination of phages and antibiotics (at sub-minimum inhibitory concentration (MIC) and MIC levels). In addition, we tested the stability of these phages at different temperatures, pH values, and in two burn ointments. Our results show that the two-phages-one-antibiotic combination had the highest killing efficiency against the P. aeruginosa strain. The phages tested showed low stability at high temperatures, acidic pH values, and in the two ointments. This work provides additional support for the potential of using combinations of phage-antibiotic cocktails at sub-MIC levels for the treatment of multidrug-resistant P. aeruginosa infections.


Assuntos
Antibacterianos/uso terapêutico , Queimaduras/tratamento farmacológico , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/virologia , Queimaduras/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Terapia por Fagos , Filogenia , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Rios/virologia , Esgotos/virologia
14.
PeerJ ; 9: e10602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33604166

RESUMO

While the diversity of the human gut microbiota is becoming increasingly well characterized, bacterial physiology is still a critical missing link in understanding how the gut microbiota may be implicated in disease. The current best practice for studying bacterial physiology involves the immediate storage of fecal samples in an anaerobic chamber. This reliance on immediate access to anaerobic chambers greatly limits the scope of sample populations that can be studied. Here, we assess the effects of short-term oxygen exposure on gut bacterial physiology and diversity. We use relative nucleic acid content and membrane integrity as markers of bacterial physiology, and 16S rRNA gene amplicon sequencing to measure bacterial diversity. Samples were stored for up to 6 h in either ambient conditions or in anoxic environments created with gas packs or in an anaerobic chamber. Our data indicate that AnaeroGen sachets preserve bacterial membrane integrity and nucleic acid content over the course of 6 h similar to storage in an anaerobic chamber. Short-term oxygen exposure increases bacterial membrane permeability, without exceeding inter-individual differences. As oxygen exposure remains an important experimental consideration for bacterial metabolism, our data suggest that AnaeroGen sachets are a valid alternative limiting loss of membrane integrity for short-term storage of samples from harder-to-access populations.

15.
Sci Rep ; 11(1): 1421, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446825

RESUMO

Gut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Assuntos
Firmicutes , Microbioma Gastrointestinal , Mucosa Intestinal , Spirochaetaceae , Infecção por Zika virus , Zika virus/metabolismo , Animais , Firmicutes/classificação , Firmicutes/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Camundongos , Spirochaetaceae/classificação , Spirochaetaceae/crescimento & desenvolvimento , Infecção por Zika virus/metabolismo , Infecção por Zika virus/microbiologia
16.
Phage (New Rochelle) ; 2(4): 224-231, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36159886

RESUMO

Introduction: Bacteriophage plaque enumeration is a critical step in a wide array of protocols. The current gold standard for plaque enumeration on Petri dishes is through manual counting. However, this approach is not only time-consuming and prone to human error but also limited to Petri dishes with countable number of plaques resulting in low throughput. Materials and Methods: We present OnePetri, a collection of trained machine learning models and open-source mobile application for the rapid enumeration of bacteriophage plaques on circular Petri dishes. Results: When compared against the current gold standard of manual counting, OnePetri was ∼30 × faster. Compared against other similar tools, OnePetri had lower relative error (∼13%) than Plaque Size Tool (PST) (∼86%) and CFU.AI (∼19%), while also having significantly reduced detection times over PST (1.7 × faster). Conclusions: The OnePetri application is a user-friendly platform that can rapidly enumerate phage plaques on circular Petri dishes with high precision and recall.

17.
Gut Microbes ; 12(1): 1-11, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33064969

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that has been shown to be influenced by the intestinal milieu. The gut microbiota is altered in PD patients, and murine studies have begun suggesting a causative role for the gut microbiota in progression of PD. We have previously shown that repeated infection with the intestinal murine pathogen Citrobacter rodentium resulted in the development of PD-like pathology in Pink1-/- mice compared to wild-type littermates. This addendum aims to expand this work by characterizing the gut microbiota during C. rodentium infection in our Pink1-/- PD model. We observed little disturbance to the fecal microbiota diversity both between infection timepoints and between Pink1-/- and wild-type control littermates. However, the level of short-chain fatty acids appeared to be altered over the course of infection with butyric acid significantly increasing in Pink1-/- mice and isobutyric acid increasing in wild-type mice.


Assuntos
Citrobacter rodentium/fisiologia , Infecções por Enterobacteriaceae/microbiologia , Microbioma Gastrointestinal , Doença de Parkinson/microbiologia , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Modelos Animais de Doenças , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Camundongos , Proteínas Quinases/genética
18.
Cell Host Microbe ; 27(2): 199-212.e5, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32053789

RESUMO

Stunting, a severe and multigenerational growth impairment, globally affects 22% of children under the age of 5 years. Stunted children have altered gut bacterial communities with higher proportions of Proteobacteria, a phylum with several known human pathogens. Despite the links between an altered gut microbiota and stunting, the role of bacteriophages, highly abundant bacterial viruses, is unknown. Here, we describe the gut bacterial and bacteriophage communities of Bangladeshi stunted children younger than 38 months. We show that these children harbor distinct gut bacteriophages relative to their non-stunted counterparts. In vitro, these gut bacteriophages are infectious and can regulate bacterial abundance and composition in an age-specific manner, highlighting their possible role in the pathophysiology of child stunting. Specifically, Proteobacteria from non-stunted children increased in the presence of phages from younger stunted children, suggesting that phages could contribute to the bacterial community changes observed in child stunting.


Assuntos
Bacteriófagos/isolamento & purificação , Microbioma Gastrointestinal , Transtornos do Crescimento/microbiologia , Transtornos do Crescimento/virologia , Fatores Etários , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Pré-Escolar , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Genes Bacterianos , Genes Virais , Interações entre Hospedeiro e Microrganismos , Humanos , Lactente , Masculino , Metagenômica , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/virologia , RNA Ribossômico 16S
19.
Curr Opin Chem Biol ; 56: 10-15, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31678829

RESUMO

The human gastrointestinal tract hosts almost a trillion microorganisms, organized in a complex community known as the gut microbiota, an integral part of human physiology and metabolism. Indeed, disease-specific alterations in the gut microbiota have been observed in several chronic disorders, including obesity and inflammatory bowel diseases. Correcting these alterations could revert the development of such pathologies or alleviate their symptoms. Recently, the gut microbiota has been the target of drug discovery that goes beyond classic probiotic approaches. This short review examines the promises and limitations of the latest strategies designed to modulate the gut bacterial community, and it explores the druggability of the gut microbiota by focusing on the potential of small molecules and prebiotics.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/virologia , Probióticos/metabolismo , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Descoberta de Drogas , Trato Gastrointestinal/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Prebióticos/microbiologia , Probióticos/farmacologia
20.
Nat Microbiol ; 4(12): 2052-2063, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570867

RESUMO

Diet is a critical determinant of variation in gut microbial structure and function, outweighing even host genetics1-3. Numerous microbiome studies have compared diets with divergent ingredients1-5, but the everyday practice of cooking remains understudied. Here, we show that a plant diet served raw versus cooked reshapes the murine gut microbiome, with effects attributable to improvements in starch digestibility and degradation of plant-derived compounds. Shifts in the gut microbiota modulated host energy status, applied across multiple starch-rich plants, and were detectable in humans. Thus, diet-driven host-microbial interactions depend on the food as well as its form. Because cooking is human-specific, ubiquitous and ancient6,7, our results prompt the hypothesis that humans and our microbiomes co-evolved under unique cooking-related pressures.


Assuntos
Bactérias/classificação , Culinária , Dieta , Alimentos , Microbioma Gastrointestinal , Alimentos Crus/análise , Adulto , Animais , Fezes/microbiologia , Feminino , Variação Genética , Vida Livre de Germes , Temperatura Alta , Humanos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA