Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746378

RESUMO

Chromatin organization controls DNA's accessibility to regulatory factors to influence gene expression. Heterochromatin, or transcriptionally silent chromatin enriched in methylated DNA and methylated histone tails, self-assembles through multivalent interactions with its associated proteins into a condensed, but dynamic state. Liquid-liquid phase separation (LLPS) of key heterochromatin regulators, such as heterochromatin protein 1 (HP1), plays an essential role in heterochromatin assembly and function. Methyl-CpG-binding protein 2 (MeCP2), the most studied member of the methyl-CpG-binding domain (MBD) family of proteins, has been recently shown to undergo LLPS in the absence and presence of methylated DNA. These studies provide a new mechanistic framework for understanding the role of methylated DNA and its readers in heterochromatin formation. However, the details of the molecular interactions by which other MBD family members undergo LLPS to mediate genome organization and transcriptional regulation are not fully understood. Here, we focus on two MBD proteins, MBD2 and MBD3, that have distinct but interdependent roles in gene regulation. Using an integrated computational and experimental approach, we uncover the homotypic and heterotypic interactions governing MBD2 and MBD3 phase separation and DNA's influence on this process. We show that despite sharing the highest sequence identity and structural homology among all the MBD protein family members, MBD2 and MBD3 exhibit differing residue patterns resulting in distinct phase separation mechanisms. Understanding the molecular underpinnings of MBD protein condensation offers insights into the higher-order, LLPS-mediated organization of heterochromatin.

2.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526948

RESUMO

Circadian clocks are composed of transcription-translation negative feedback loops that pace rhythms of gene expression to the diurnal cycle. In the filamentous fungus Neurospora crassa, the proteins Frequency (FRQ), the FRQ-interacting RNA helicase (FRH), and Casein-Kinase I (CK1) form the FFC complex that represses expression of genes activated by the white-collar complex (WCC). FRQ orchestrates key molecular interactions of the clock despite containing little predicted tertiary structure. Spin labeling and pulse-dipolar electron spin resonance spectroscopy provide domain-specific structural insights into the 989-residue intrinsically disordered FRQ and the FFC. FRQ contains a compact core that associates and organizes FRH and CK1 to coordinate their roles in WCC repression. FRQ phosphorylation increases conformational flexibility and alters oligomeric state, but the changes in structure and dynamics are non-uniform. Full-length FRQ undergoes liquid-liquid phase separation (LLPS) to sequester FRH and CK1 and influence CK1 enzymatic activity. Although FRQ phosphorylation favors LLPS, LLPS feeds back to reduce FRQ phosphorylation by CK1 at higher temperatures. Live imaging of Neurospora hyphae reveals FRQ foci characteristic of condensates near the nuclear periphery. Analogous clock repressor proteins in higher organisms share little position-specific sequence identity with FRQ; yet, they contain amino acid compositions that promote LLPS. Hence, condensate formation may be a conserved feature of eukaryotic clocks.


Natural oscillations known as circadian rhythms influence many processes in humans and other animals including sleep, eating, brain activity and body temperature. These rhythms allow us to anticipate and prepare for regular changes in our environment including day-night cycles and the temperature of our surroundings. Circadian clocks in animals, fungi and other 'eukaryotic' organisms rely on networks of components that repress their own production to generate oscillations in their levels in cells over the course of a 24-hour period. The components in animal and fungus circadian clocks are different but there are strong similarities in their properties and how the networks operate. As a result, a type of fungus known as Neurospora crassa is often used as a model to study how circadian rhythms work in animals. A central component in the N. crassa circadian clock is a protein known as Frequency (FRQ). It is a large protein that, unlike most proteins, lacks a well-defined, three-dimensional structure. Despite this, it is able to bind to and regulate other proteins to repress its own production. One of its protein partners known as CK1 attaches small tags known as phosphate groups to FRQ to set the length of the circadian rhythm. However, it remains unclear how FRQ interacts with its protein partners or what effect the phosphate groups have on its activity. To address this question, Tariq, Maurici et al. used biochemical approaches to study the structure of FRQ. The experiments revealed that it contains a compact core that is able to bind to CK1 and other protein partners. The way FRQ regulates its protein partners is unusual: it undergoes a chemical process known as liquid-liquid phase separation to sequester other circadian clock proteins and modulate their enzymatic activities. In this process, a solution containing molecules of FRQ separates into two distinct components (known as phases), one of which contains FRQ and its partners in a concentrated liquid-like mixture. Evidence for such mixtures has also been found in living fungal cells. Further experiments suggest that liquid-liquid phase separation of FRQ may allow the clock to compensate for changes in temperature to maintain a regular rhythm. The circadian clocks of animals and other organisms all have proteins that perform similar roles as FRQ and maintain sequence properties that promote liquid-liquid phase separation. Therefore, it is possible that liquid-liquid phase separation may be a common feature of circadian rhythms in nature.


Assuntos
Relógios Circadianos , Neurospora crassa , Relógios Circadianos/genética , Fosforilação , Separação de Fases , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Ritmo Circadiano/genética
3.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 650-655, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279317

RESUMO

The X-ray crystal structures of two superfolder green fluorescent protein (sfGFP) constructs containing a genetically incorporated spectroscopic reporter unnatural amino acid, 4-nitro-L-phenylalanine (pNO2F), at two unique sites in the protein have been determined. Amber codon-suppression methodology was used to site-specifically incorporate pNO2F at a solvent-accessible (Asp133) and a partially buried (Asn149) site in sfGFP. The Asp133pNO2F sfGFP construct crystallized with two molecules per asymmetric unit in space group P3221 and the crystal structure was refined to 2.05 Šresolution. Crystals of Asn149pNO2F sfGFP contained one molecule of sfGFP per asymmetric unit in space group P4122 and the structure was refined to 1.60 Šresolution. The alignment of Asp133pNO2F or Asn149pNO2F sfGFP with wild-type sfGFP resulted in small root-mean-square deviations, illustrating that these residues do not significantly alter the protein structure and supporting the use of pNO2F as an effective spectroscopic reporter of local protein structure and dynamics.


Assuntos
Alanina/análogos & derivados , Asparagina/química , Ácido Aspártico/química , Proteínas de Fluorescência Verde/química , Nitrilas/química , Fenilalanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nitrilas/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
4.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 121-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26894540

RESUMO

The X-ray crystal structures of superfolder green fluorescent protein (sfGFP) containing the spectroscopic reporter unnatural amino acids (UAAs) 4-cyano-L-phenylalanine (pCNF) or 4-ethynyl-L-phenylalanine (pCCF) at two unique sites in the protein have been determined. These UAAs were genetically incorporated into sfGFP in a solvent-exposed loop region and/or a partially buried site on the ß-barrel of the protein. The crystal structures containing the UAAs at these two sites permit the structural implications of UAA incorporation for the native protein structure to be assessed with high resolution and permit a direct correlation between the structure and spectroscopic data to be made. The structural implications were quantified by comparing the root-mean-square deviation (r.m.s.d.) between the crystal structure of wild-type sfGFP and the protein constructs containing either pCNF or pCCF in the local environment around the UAAs and in the overall protein structure. The results suggest that the selective placement of these spectroscopic reporter UAAs permits local protein environments to be studied in a relatively nonperturbative fashion with site-specificity.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Hidrozoários/química , Fenilalanina/análogos & derivados , Animais , Cristalografia por Raios X , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA