RESUMO
Background: Microsatellite stable (MSS) metastatic colorectal cancer (CRC) remains predominantly managed with chemotherapy. The use of immunotherapy, whether alone or in combination with other systemic or local treatments, displays limited success, especially in the context of active liver metastases (LM). The mechanisms responsible for this resistance are not fully understood. Methods: We conducted a comprehensive search across electronic databases such as Medline, PubMed, Google Scholar and ScienceDirect. This search targeted translational studies evaluating the liver tumour immune microenvironment and immune tolerance mechanisms in CRC with LM and prospective studies that assessed immunotherapy either as a standalone treatment or in combination with other systemic or local therapies for patients diagnosed with MSS CRC. Our primary objectives included elucidating the mechanisms of resistance originating from LM in a non-systematic literature review and presenting a summary of the outcomes observed in prospective trials utilising immune checkpoint inhibitors (ICIs), with a focus on the presence of LM. Findings: There were 16 prospective trials evaluating immunotherapy for metastatic CRC comprising 1,713 patients. Response rates to immunotherapy inpatients with colorectal liver metastases (CRLM) varied from 0% to 23%. Overall, reduced or null responses to immunotherapy in the presence of liver metastasis in comparison to patients without liver involvement were observed. Conclusion: Studies consistently show the resistance derived from classical ICI, both alone and in combination with other systemic treatments in patients with CRLM. The design of upcoming trials using immunotherapy should consider LM as a stratification factor or contemplate excluding patients with liver involvement.
RESUMO
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.
Assuntos
Hormônio Liberador de Gonadotropina , Neurônios , Odorantes , Bulbo Olfatório , Comportamento Sexual Animal , Órgão Vomeronasal , Animais , Masculino , Hormônio Liberador de Gonadotropina/metabolismo , Bulbo Olfatório/fisiologia , Bulbo Olfatório/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia , Feminino , Órgão Vomeronasal/fisiologia , Órgão Vomeronasal/metabolismo , Camundongos Endogâmicos C57BL , Olfato/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologiaRESUMO
BACKGROUND: Estrogen secretion by the ovaries regulates the hypothalamic-pituitary-gonadal axis during the reproductive cycle, influencing gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion, and also plays a role in regulating metabolism. Here, we establish that hypothalamic tanycytes-specialized glia lining the floor and walls of the third ventricle-integrate estrogenic feedback signals from the gonads and couple reproduction with metabolism by relaying this information to orexigenic neuropeptide Y (NPY) neurons. METHODS: Using mouse models, including mice floxed for Esr1 (encoding estrogen receptor alpha, ERα) and those with Cre-dependent expression of designer receptors exclusively activated by designer drugs (DREADDs), along with viral-mediated, pharmacological and indirect calorimetric approaches, we evaluated the role of tanycytes and tanycytic estrogen signaling in pulsatile LH secretion, cFos expression in NPY neurons, estrous cyclicity, body-weight changes and metabolic parameters in adult females. RESULTS: In ovariectomized mice, chemogenetic activation of tanycytes significantly reduced LH pulsatile release, mimicking the effects of direct NPY neuron activation. In intact mice, tanycytes were crucial for the estrogen-mediated control of GnRH/LH release, with tanycytic ERα activation suppressing fasting-induced NPY neuron activation. Selective knockout of Esr1 in tanycytes altered estrous cyclicity and fertility in female mice and affected estrogen's ability to inhibit refeeding in fasting mice. The absence of ERα signaling in tanycytes increased Npy transcripts and body weight in intact mice and prevented the estrogen-mediated decrease in food intake as well as increase in energy expenditure and fatty acid oxidation in ovariectomized mice. CONCLUSIONS: Our findings underscore the pivotal role of tanycytes in the neuroendocrine coupling of reproduction and metabolism, with potential implications for its age-related deregulation after menopause. SIGNIFICANCE STATEMENT: Our investigation reveals that tanycytes, specialized glial cells in the brain, are key interpreters of estrogen signals for orexigenic NPY neurons in the hypothalamus. Disrupting tanycytic estrogen receptors not only alters fertility in female mice but also impairs the ability of estrogens to suppress appetite. This work thus sheds light on the critical role played by tanycytes in bridging the hormonal regulation of cyclic reproductive function and appetite/feeding behavior. This understanding may have potential implications for age-related metabolic deregulation after menopause.
Assuntos
Células Ependimogliais , Receptor alfa de Estrogênio , Fertilidade , Hormônio Luteinizante , Transdução de Sinais , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Camundongos , Fertilidade/fisiologia , Células Ependimogliais/metabolismo , Transdução de Sinais/fisiologia , Hormônio Luteinizante/metabolismo , Ciclo Estral/fisiologia , Ciclo Estral/metabolismo , Neuropeptídeo Y/metabolismo , Ovariectomia , Neurônios/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Hormônio Liberador de Gonadotropina/metabolismoRESUMO
Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.
Assuntos
Florestas , Árvores , Água , Água/metabolismo , Água/fisiologia , Árvores/fisiologia , Brasil , Secas , Transpiração Vegetal/fisiologia , Solo/química , Folhas de Planta/fisiologiaRESUMO
Capillary temperature control during capillary electrophoresis (CE) separations is key for achieving accurate and reproducible results with a broad array of potential methods. However, the difficulty of enabling typical fluid temperature control loops on portable instruments has meant that active capillary temperature control of in situ CE systems has frequently been overlooked. This work describes construction and test of a solid-state device for capillary temperature control that is suitable for inclusion with in situ instruments, including those designed for space missions. Two test articles were built, a thermal mass model (TMM) and a functional model (FM). The TMM demonstrated that temperature gradients could be limited using the proposed control scheme, and that our thermal modeling of the system can be relied on for future adaptations of physical geometries of the system. The FM demonstrated CE analytical performance while under active temperature control and that the device was compatible with the harsh thermal-vacuum environments that might be encountered during space flight.
Assuntos
Eletroforese Capilar , Desenho de Equipamento , Voo Espacial , Temperatura , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Voo Espacial/instrumentaçãoRESUMO
Light chain multiple myeloma presenting as secondary cutaneous amyloidosis is an uncommon systemic manifestation, posing diagnostic challenges. We present a case of an elderly woman with a history of hemorrhoidal disease, who sought medical attention for what she thought was rectal bleeding. Initial examination revealed an ulcerative vulvar lesion. After extensive evaluation by different medical fields, two skin and a bone marrow biopsies, the diagnosis was finally confirmed. This case emphasizes interdisciplinary collaboration, comprehensive evaluation, and awareness of rare multiple myeloma manifestations. It highlights the importance of considering systemic implications even in localized presentations.
RESUMO
The procedure followed by the Nuclear Metrology Laboratory (LMN) at the IPEN for the primary standardization of a (243Am + 239Np) solution, in secular equilibrium, is described. The measurement was carried out in a 4π(PC) (α,ß)-γ coincidence system. The total activity per unit mass of the solution was determined by the extrapolation technique, using a software coincidence counting systsem. The extrapolation curves were compared with Monte Carlo calculations by means of Code ESQUEMA, used in previous works, which, was improved and applied in order to calculate the alpha, beta, gamma, X-rays and coincidence spectra.
RESUMO
BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common endocrine disorder leading to anovulatory infertility. Abnormalities in the central neuroendocrine system governed by gonadotropin-releasing hormone (GnRH) neurons might be related to ovarian dysfunction in PCOS, although the link in this disordered brain-to-ovary communication remains unclear. Here, we manipulated GnRH neurons using chemogenetics in adult female mice to unveil whether chronic overaction of these neurons would trigger PCOS-like hormonal and reproductive impairments. METHODS: We used adult Gnrh1cre female mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in hypophysiotropic GnRH neurons. Chronic chemogenetic activation protocol was carried out with clozapine N-oxide (CNO) i.p. injections every 48 h over a month. We evaluated the reproductive and hormonal profile before, during, and two months after chemogenetic manipulations. FINDINGS: We discovered that the overactivation of GnRH neurons was sufficient to disrupt reproductive cycles, promote hyperandrogenism, and induce ovarian dysfunction. These PCOS features were detected with a long-lasting neuroendocrine dysfunction through abnormally high luteinizing hormone (LH) pulse secretion. Additionally, the GnRH-R blockade prevented the establishment of long-term neuroendocrine dysfunction and androgen excess in these animals. INTERPRETATION: Taken together, our results show that hyperactivity of hypothalamic GnRH neurons is a major driver of reproductive and hormonal impairments in PCOS and suggest that antagonizing the aberrant GnRH signaling could be an efficient therapeutic venue for the treatment of PCOS. FUNDING: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n⦠725149).
Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Hormônio Luteinizante , Hormônio Liberador de Gonadotropina , NeurôniosRESUMO
Hypercoagulability, a major complication of metastatic cancers, has usually been treated with heparins from natural sources, or with their synthetic derivatives, which are under intense investigation in clinical oncology. However, the use of heparin has been challenging for patients with risk of severe bleeding. While the systemic administration of heparins, in preclinical models, has shown primarily attenuating effects on metastasis, their direct effect on established solid tumors has generated contradictory outcomes. We investigated the direct antitumoral properties of two sulfated fucans isolated from marine echinoderms, FucSulf1 and FucSulf2, which exhibit anticoagulant activity with mild hemorrhagic potential. Unlike heparin, sulfated fucans significantly inhibited tumor cell proliferation (by ~30-50%), and inhibited tumor migration and invasion in vitro. We found that FucSulf1 and FucSulf2 interacted with fibronectin as efficiently as heparin, leading to loss of prostate cancer and melanoma cell spreading. The sulfated fucans increased the endocytosis of ß1 integrin and neuropilin-1 chains, two cell receptors implicated in fibronectin-dependent adhesion. The treatment of cancer cells with both sulfated fucans, but not with heparin, also triggered intracellular focal adhesion kinase (FAK) degradation, with a consequent overall decrease in activated focal adhesion kinase levels. Finally, only sulfated fucans inhibited the growth of B16-F10 melanoma cells implanted in the dermis of syngeneic C57/BL6 mice. FucSulf1 and FucSulf2 arise from this study as candidates for the design of possible alternatives to long-term treatments of cancer patients with heparins, with the advantage of also controlling local growth and invasion of malignant cells.
Assuntos
Integrina beta1 , Melanoma , Masculino , Animais , Humanos , Camundongos , Proteína-Tirosina Quinases de Adesão Focal , Integrina beta1/metabolismo , Fibronectinas/metabolismo , Neuropilina-1 , Heparina/farmacologia , EndocitoseRESUMO
We report here the first fully automated capillary electrophoresis (CE) system that can be operated underwater. The system performs sample acquisition and analysis by coupling CE to contactless conductivity detection. Using 5 M acetic acid as the background electrolyte (BGE), inorganic cations and amino acids at concentrations as low as 5.2 µM can be separated and identified. This technology could be augmented to include a variety of other detection modes. This system serves as an early prototype for potential future underwater explorers on ocean worlds of the outer solar system such as Europa or Enceladus. This work documents the first step in the development of this general-purpose technology platform.
RESUMO
BACKGROUND: Essential elements have functions in tumor progression by promoting protumoral cellular processes, such as proliferation, and migration, among others. Obtaining an understanding of how these elements relate to tumor progression processes is of great importance for research. Elemental profile studies in distant tissues, which can be modulated by tumor cells to promote metastasis, have not been sufficiently investigated. The main goal of this study is to evaluate multielemental distribution during tumor progression, focusing on tumor tissue and distant tissues that may be affected. METHODS: Tumor progression in vivo was simulated by inoculating C57BL/6 mice with Lewis Lung Carcinoma (LLC) cells. Samples of the primary tumor and distant tissues were collected during 5 weeks of tumor progression for the control and experimental (tumor-bearing) groups. The biological samples were analyzed using the synchrotron radiation X-Ray fluorescence technique. Data on the concentration of P, S, K, Ca, Mn, Fe, Cu, and Zn in the samples were obtained and statistically analyzed to evaluate the distribution of the elements during tumor progression in the primary tumor as well as distant tissues. RESULTS: It was possible to observe significant changes in the concentrations' distribution of P, S, K, Ca, Mn, Fe, and Cu in distant tissues caused by the presence of tumor cells. It was also possible to detect a greater similarity between tumor tissue (which has the lung as tissue of origin) and a tissue of non-origin, such as the liver, which is an unprecedented result. Moreover, changes in the distributions of concentrations were detected and studied over time for the different tissues analyzed, such as primary tumor, liver and lung, in Control and Tumor groups. CONCLUSIONS: Among other results, this paper could explore the modulation of distant tissues caused by the presence of a primary tumor. This could be achieved by the evaluation of several elements of known biological importance allowing the study of different biological processes involved in cancer. The role of essential elements as modulators of the tumor microenvironment is a relevant aspect of tumor progression and this work is a contribution to the field of tumoral metallomics.
Assuntos
Processos Neoplásicos , Microambiente Tumoral , Animais , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Capillary electrophoresis (CE) holds great promise as an in situ analytical technique for a variety of applications. However, typical instrumentation operates with open reservoirs (e.g., vials) to accommodate reagents and samples, which is problematic for automated instruments designed for space or underwater applications that may be operated in various orientations. Microgravity conditions add an additional challenge due to the unpredictable position of the headspace (air layer above the liquid) in any two-phase reservoir. One potential solution for these applications is to use a headspace-free, flow-through reservoir design that is sealed and connected to the necessary reagents and samples. Here, we demonstrate a flow-through high-voltage (HV) reservoir for CE that is compatible with automated in situ exploration needs, and which can be electrically isolated from its source fluidics (in order to prevent unwanted leakage current). We also demonstrate how the overall system can be rationally designed based on the operational parameters for CE to prevent electrolysis products generated at the electrode from entering the capillary and interfering with the CE separation. A reservoir was demonstrated with a 19 mm long, 1.8 mm inner diameter channel connecting the separation capillary and the HV electrode. Tests of these reservoirs integrated into a CE system show reproducible CE system operation with a variety of background electrolytes at voltages up to 25 kV. Rotation of the reservoirs, and the system, showed that their performance was independent of the direction of the gravity vector.
Assuntos
Eletrólise , Eletroforese Capilar , Eletroforese Capilar/métodos , EletrodosRESUMO
BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine disorder affecting between 5 and 18% of women worldwide. An elevated frequency of pulsatile luteinizing hormone (LH) secretion and higher serum levels of anti-Müllerian hormone (AMH) are frequently observed in women with PCOS. The origin of these abnormalities is, however, not well understood. METHODS: We studied brain structure and function in women with and without PCOS using proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging combined with fiber tractography. Then, using a mouse model of PCOS, we investigated by electron microscopy whether AMH played a role on the regulation of hypothalamic structural plasticity. FINDINGS: Increased AMH serum levels are associated with increased hypothalamic activity/axonal-glial signalling in PCOS patients. Furthermore, we demonstrate that AMH promotes profound micro-structural changes in the murine hypothalamic median eminence (ME), creating a permissive environment for GnRH secretion. These include the retraction of the processes of specialized AMH-sensitive ependymo-glial cells called tanycytes, allowing more GnRH neuron terminals to approach ME blood capillaries both during the run-up to ovulation and in a mouse model of PCOS. INTERPRETATION: We uncovered a central function for AMH in the regulation of fertility by remodeling GnRH terminals and their tanycytic sheaths, and provided insights into the pivotal role of the brain in the establishment and maintenance of neuroendocrine dysfunction in PCOS. FUNDING: INSERM (U1172), European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n° 725149), CHU de Lille, France (Bonus H).
Assuntos
Síndrome do Ovário Policístico , Humanos , Animais , Camundongos , Feminino , Hormônio Luteinizante , Hormônio Antimülleriano , Imagem de Tensor de Difusão , Hormônio Liberador de Gonadotropina , Neuroglia/patologiaRESUMO
Sample injection is a critical step in a capillary electrophoresis (CE) analysis. Electrokinetic injection is the simplest approach and is often selected for implementation in portable CE instruments. However, in order to minimize the effect of sample matrix upon the results of a CE analysis, hydrodynamic injection is preferred. Although portable CE instruments with hydrodynamic injection have been reported, injection has always been performed at the grounded end of the capillary. This simplifies fluidic handling but limits coupling with electrochemical detectors and electrospray ionization-mass spectrometry (ESI-MS). We demonstrated previously that injection at the high-voltage (HV) end of the capillary could be performed using an HV-compatible rotary injection valve (fixed-volume injection). However, the mismatch between the bore sizes of the channels on the rotor-stator valve and the separation capillary caused peak tailing and undesired mixing, impairing analytical performance. In this work, we present an HV-compatible hydrodynamic injection approach that overcomes the issues associated with the fixed-volume injection approach reported previously. The performance of the CE instrument was demonstrated by analyzing a mixture of 13 amino acids by CE coupled to laser-induced fluorescence, which showed relative standard deviations for peak area and migration time below 5% and 1%, respectively, for triplicate analysis. Additionally, replicate measurements of a mixture of amino acids, peptides, nucleobases, and nucleosides by CE coupled to electrospray ionization-mass spectrometry (CE-ESI-MS) were performed to evaluate peak tailing, and results were similar to those obtained with a commercial CE-ESI-MS setup.
Assuntos
Hidrodinâmica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletroforese Capilar/métodos , Peptídeos , AminoácidosRESUMO
Lactation diets dependent on rumen undegradable protein (RUP) sources derived from soybean meal (SBM) products are generally high in Lys and poor in Met. We conducted an experiment to evaluate the effects of increasing dietary RUP and altering digestible AA supply by inclusion of heat-treated soybean meal (HTSBM) or high-protein corn dried distillers grains with soluble (DDGS) on performance in mid-lactation dairy cows. Twenty-four Holstein cows (200 ± 40 d in milk and 30.0 ± 3.92 kg/d of milk yield) blocked according to parity, milk yield, and days in milk were used in a 3 × 3 Latin square design experiment with 21-d periods. Treatments were (1) control (CON), a diet with 6.0% RUP containing 15.9% SBM as the main protein source; (2) HTSBM, a diet with 6.7% RUP containing 4.4% HTSBM partially replacing SBM; and (3) high-protein DDGS (FP; FlexyPro, SJC Bioenergia), a diet with 6.9% RUP containing 5.34% FP partially replacing SBM and ground corn. Diets had similar crude protein (16.9%) and net energy of lactation. Data were submitted to ANOVA using the mixed procedure of SAS software (SAS Institute Inc.). Treatment differences were evaluated using orthogonal contrasts: (1) increasing RUP (SBM vs. HTSBM + FP) and (2) altering digestible AA supply (HTSBM vs. FP). Cows fed HTSBM and FP had greater intake (values in parentheses represent treatment means of CON, HTSBM, and FP, respectively) of neutral detergent fiber (7.14, 7.35, and 7.69 kg/d), crude protein (4.27, 4.37, and 4.51 kg/d), and ether extract (0.942, 0.968, and 1.04 kg/d) compared with cows fed CON. Feeding FP resulted in greater intake of neutral detergent fiber and ether extract compared with HTSBM. Cows fed HTSBM and FP had lower sorting index for feed particles <4 mm than cows fed CON (1.029, 1.008, and 1.022). Feeding FP resulted in greater intake of feed particles <4 mm compared with HTSBM. Treatments containing HTSBM or FP tended to decrease organic matter digestibility (72.4, 71.2, and 71.1%), but no other effects were detected in digestibility of neutral detergent fiber, crude protein, or ether extract. No evidence for differences among treatments was detected in excretion of purine derivatives in milk and urine. Milk yield was greater in cows fed HTSBM or FP than in cows fed CON (28.0, 28.9, and 28.8 kg/d, respectively). Cows fed HTSBM or FP tended to have greater energy-corrected milk and protein yield compared with those fed CON. Milk protein concentration was greater in DDGS cows than those in the HTSBM group (3.45 and 3.40%, respectively). No differences were detected in milk fat yield and concentration, milk urea nitrogen, feed efficiency, or serum concentrations of urea and glucose. Overall, increasing dietary RUP by feeding HTSBM or FP improved intake of nutrients and milk yield without affecting feed efficiency. Altering digestible AA supply while maintaining similar dietary RUP had negligible effects on performance of cows.
Assuntos
Ração Animal , Zea mays , Gravidez , Feminino , Bovinos , Animais , Zea mays/metabolismo , Ração Animal/análise , Temperatura Alta , Detergentes/metabolismo , Farinha , Lactação , Rúmen/metabolismo , Dieta/veterinária , Glycine max/metabolismo , Proteínas Alimentares/metabolismo , Nutrientes , Ureia/metabolismo , Éteres/metabolismo , Extratos Vegetais/metabolismoRESUMO
Capillary electrophoresis (CE) systems have undergone extensive development for spaceflight applications. A flight-compatible high voltage power supply and the necessary voltage isolation for other energized components can be large contributors to both the volume and mass of a CE system, especially if typical high voltage levels of 25-30 kV are used. Here, we took advantage of our custom CE hardware to perform a trade study for simultaneous optimization of capillary length, high voltage level, and separation time, without sacrificing method performance. A capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4 D) method recently developed by our group to target inorganic cations and amino acids relevant to astrobiology was used as a test case. The results indicate that a 50 cm long capillary with 15 kV applied voltage (half of that used in the original method) can be used to achieve measurement goals while minimizing instrument size.
Assuntos
Eletroforese Capilar , Cátions/análise , Eletroforese Capilar/métodos , Condutividade ElétricaRESUMO
Positioning systems are used in a wide range of applications which require determining the position of an object in space, such as locating and tracking assets, people and goods; assisting navigation systems; and mapping. Indoor Positioning Systems (IPSs) are used where satellite and other outdoor positioning technologies lack precision or fail. Ultra-WideBand (UWB) technology is especially suitable for an IPS, as it operates under high data transfer rates over short distances and at low power densities, although signals tend to be disrupted by various objects. This paper presents a comprehensive study of the precision, failure, and accuracy of 2D IPSs based on UWB technology and a pseudo-range multilateration algorithm using Time Difference of Arrival (TDoA) signals. As a case study, the positioning of a 4×4m2 area, four anchors (transceivers), and one tag (receiver) are considered using bitcraze's Loco Positioning System. A Cramér-Rao Lower Bound analysis identifies the convex hull of the anchors as the region with highest precision, taking into account the anisotropic radiation pattern of the anchors' antennas as opposed to ideal signal distributions, while bifurcation envelopes containing the anchors are defined to bound the regions in which the IPS is predicted to fail. This allows the formulation of a so-called flyable area, defined as the intersection between the convex hull and the region outside the bifurcation envelopes. Finally, the static bias is measured after applying a built-in Extended Kalman Filter (EKF) and mapped using a Radial Basis Function Network (RBFN). A debiasing filter is then developed to improve the accuracy. Findings and developments are experimentally validated, with the IPS observed to fail near the anchors, precision around ±3cm, and accuracy improved by about 15cm for static and 5cm for dynamic measurements, on average.