Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 168: 210-222, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406716

RESUMO

Papillary and reticular dermis show distinct extracellular matrix (ECM) and vascularization corresponding to their specific functions. These characteristics are associated with gene expression patterns of fibroblasts freshly isolated from their native microenvironment. In order to assess the relevance of these fibroblast subpopulations in a tissue engineering context, we investigated their contribution to matrix production and vascularization using cell sheet culture conditions. We first performed RNA-seq differential expression analysis to determine whether several rounds of cell amplification and high-density culture affected their gene expression profile. Bioinformatics analysis revealed that expression of angiogenesis-related and matrisome gene signatures were maintained, resulting in papillary and reticular ECMs that differ in composition and structure. The impact of secreted or ECM-associated factors was then assessed using two independent 3D angiogenesis assays: -1/ a fibrin hydrogel-based assay allowing investigation of diffusible secreted factors, -2/ a scaffold-free cell-sheet based assay for investigation of fibroblast-produced microenvironment. These analyses revealed that papillary fibroblasts secrete highly angiogenic factors and produce a microenvironment characterised by ECM remodelling capacity and dense and branched microvascular network, whereas reticular fibroblasts produced more structural core components of the ECM associated with less branched and larger vessels. These features mimick the characteristics of both the ECM and the vasculature of dermis subcompartments. In addition to showing that skin fibroblast populations differentially regulate angiogenesis via both secreted and ECM factors, our work emphasizes the importance of papillary and reticular fibroblasts for engineering and modelling dermis microenvironment and vascularization. STATEMENT OF SIGNIFICANCE: Recent advances have brought to the forefront the central role of microenvironment and vascularization in tissue engineering for regenerative medicine and microtissue modelling. We have investigated the role of papillary and reticular fibroblast subpopulations using scaffold-free cell sheet culture. This approach provides differentiated cells conditions allowing the production of their own microenvironment. Analysis of gene expression profiles and characterisation of the matrix produced revealed strong and specific angiogenic properties that we functionally characterized using 3D angiogenesis models targeting the respective role of either secreted or matrix-bound factors. This study demonstrates the importance of cell-generated extracellular matrix and questions the importance of cell source and the relevance of hydrogels for developing physio-pathologically relevant tissue engineered substitutes.


Assuntos
Técnicas de Cultura de Células , Derme , Humanos , Engenharia Tecidual/métodos , Epiderme , Neovascularização Patológica/metabolismo , Fibroblastos , Matriz Extracelular/metabolismo
2.
Acta Biomater ; 168: 361-371, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419164

RESUMO

A complete in vitro skin model, containing resident cell types is needed to understand physiology and to consider the role of immune and endothelial cells in dermal drug testing. In this study, a cell extraction technique was developed to isolate resident skin cells from the same human donor while preserving the immune and endothelial cells. Then those cells were used to reconstruct an autologous, vascularized, and immunocompetent Tissue-Engineered Skin model, aviTES. Phenotypic characterization of the viable cells was performed on freshly isolated cells and after thawing through flow cytometry. Dermal cell extracts were characterized as fibroblasts, endothelial and immune cells, and the average amount of each cell type represents 4, 0.5, and 1 million viable cells per g of the dermis, respectively. The 3D models, TES and aviTES, were characterized by a fully differentiated epidermis that showed an increase in the presence of Ki67+ cells in the basolateral layer of the aviTES model. Capillary-like network formation, through the self-assembly of endothelial cells, and the presence of functional immune cells were identified through immunofluorescence staining in aviTES. In addition, the aviTES model was immunocompetent, as evidenced by its capacity to increase the production of pro-inflammatory cytokines TNF-α, MIP-1α, and GM-CSF following LPS stimulation. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate resident skin cell interactions and drug development. STATEMENT OF SIGNIFICANCE: There is an urgent need for a complete in vitro skin model containing the resident cell types to better understand the role of immune and endothelial cells in skin and to be able to use it for drug testing. Actual 3D models of human skin most often contain only fibroblasts and keratinocytes with a limited number of models containing endothelial cells or a limited variety of immune cells. This study describes an autologous skin model containing a functional resident skin immune system and a capillary network. It provides a relevant tool to study the contribution of the immune system to skin diseases and inflammatory responses and to investigate interactions between resident skin cell, improving our capacity to develop new drugs.


Assuntos
Células Endoteliais , Dermatopatias , Humanos , Células Endoteliais/fisiologia , Pele/irrigação sanguínea , Queratinócitos/metabolismo , Células Epidérmicas , Fibroblastos/metabolismo , Dermatopatias/metabolismo , Engenharia Tecidual/métodos
3.
JCI Insight ; 3(10)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29769447

RESUMO

In response to collagen stimulation, platelets use a coordinated system of fluid entry to undergo membrane ballooning, procoagulant spreading, and microvesiculation. We hypothesized that water entry was mediated by the water channel aquaporin-1 (AQP1) and aimed to determine its role in the platelet procoagulant response and thrombosis. We established that human and mouse platelets express AQP1 and localize to internal tubular membrane structures. However, deletion of AQP1 had minimal effects on collagen-induced platelet granule secretion, aggregation, or membrane ballooning. Conversely, procoagulant spreading, microvesiculation, phosphatidylserine exposure, and clot formation time were significantly diminished. Furthermore, in vivo thrombus formation after FeCl3 injury to carotid arteries was also markedly suppressed in AQP1-null mice, but hemostasis after tail bleeding remained normal. The mechanism involves an AQP1-mediated rapid membrane stretching during procoagulant spreading but not ballooning, leading to calcium entry through mechanosensitive cation channels and a full procoagulant response. We conclude that AQP1 is a major regulator of the platelet procoagulant response, able to modulate coagulation after injury or pathologic stimuli without affecting other platelet functional responses or normal hemostasis. Clinically effective AQP1 inhibitors may therefore represent a novel class of antiprocoagulant antithrombotics.


Assuntos
Aquaporina 1/fisiologia , Plaquetas/metabolismo , Coagulantes/metabolismo , Trombose/fisiopatologia , Animais , Aquaporina 1/antagonistas & inibidores , Aquaporina 1/genética , Aquaporina 1/metabolismo , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA