Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881860

RESUMO

Aegilops tauchii is a D-genome donor of hexaploid wheat and is a potential source of genes for various biotic and abiotic stresses including heat and drought. In the present study, we used multi-stage evaluation technique to understand the effects of heat and drought stresses on Ae. tauschii derived introgression lines (ILs). Preliminary evaluation (during stage-I) of 369 ILs for various agronomic traits identified 59 agronomically superior ILs. In the second stage (stage-II), selected ILs (i.e., 59 ILs) were evaluated for seedling heat (at 30 °C and 35 °C) and drought (at 20% poly-ethylene glycol; PEG) stress tolerance under growth chambers (stage-II). Heat and drought stress significantly reduced the seedling vigour by 59.29 and 60.37 percent, respectively. Genotype × treatment interaction analysis for seedling vigour stress tolerance index (STI) identified IL-50, IL-56, and IL-68 as high-performing ILs under heat stress and IL-42 and IL-44 as high-performing ILs under drought stress. It also revealed IL-44 and IL-50 as the stable ILs under heat and drought stresses. Furthermore, in the third stage (stage-III), selected ILs were evaluated for heat and drought stress tolerance under field condition over two cropping seasons (viz., 2020-21 and 2021-22), which significantly reduced the grain yield by 72.79 and 48.70 percent, respectively. Stability analysis was performed to identify IL-47, IL-51, and IL-259 as the most stable ILs in stage-III. Tolerant ILs with specific and wider adaptability identified in this study can serve as the potential resources to understand the genetic basis of heat and drought stress tolerance in wheat and they can also be utilized in developing high-yielding wheat cultivars with enhanced heat and drought stress tolerance.


Assuntos
Aegilops , Secas , Triticum , Triticum/genética , Triticum/fisiologia , Aegilops/genética , Termotolerância/genética , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Adaptação Fisiológica/genética , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico/genética , Introgressão Genética , Melhoramento Vegetal/métodos
2.
Heredity (Edinb) ; 128(6): 531-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568742

RESUMO

Introgression of genes from related species can be a powerful way to genetically improve crop yields, but selection for one trait can come at the cost to others. Wheat varieties with translocation of the short arm of chromosome 1 from the B genome of wheat (1BS) with the short arm of chromosome 1 from rye (1RS) are popular globally for their positive effect on yield and stress resistance. Unfortunately, this translocation (1BL.1RS) is also associated with poor bread making quality, mainly due to the presence of Sec-1 on its proximal end, encoding secalin proteins, and the absence of Glu-B3/Gli-B1-linked loci on its distal end, encoding low molecular weight glutenin subunits (LMW-GS). The present study aims to replace these two important loci on the 1RS arm with the wheat 1BS loci, in two popular Indian wheat varieties, PBW550 and DBW17, to improve their bread-making quality. Two donor lines in the cultivar Pavon background with absence of the Sec-1 locus and presence of the Glu-B3/Gli-B1 locus, respectively, were crossed and backcrossed with these two selected wheat varieties. In the advancing generations, marker assisted foreground selection was done for Sec-1- and Glu-B3/Gli-B1+ loci while recurrent parent recovery was done with the help of SSR markers. BC2F5 and BC2F6 near isosgenic lines (NILs) with absence of Sec-1 and presence of Glu-B3/Gli-B1 loci were evaluated for two years in replicated yield trials. As a result of this selection, thirty promising lines were generated that demonstrated improved bread making quality but also balanced with improved yield-related traits compared to the parental strains. The study demonstrates the benefits of using marker-assisted selection to replace a few loci with negative effects within larger alien translocations for crop improvement.


Assuntos
Pão , Triticum , Alelos , Secale/genética , Translocação Genética , Triticum/genética
3.
Mol Breed ; 42(11): 67, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313474

RESUMO

Colored wheat has piqued the interest of breeders and consumers alike. The chromosomal segment from 7E of Thinopyrum ponticum, which carries a leaf rust resistant gene, Lr19, has been rarely employed in wheat breeding operations due to its association with the Y gene, which gives a yellow tint to the flour. By prioritizing nutritional content over color preferences, consumer acceptance has undergone a paradigm change. Through marker-assisted backcross breeding, we introduced an alien segment harboring the Y (PsyE1) gene into a high yielding commercial bread wheat (HD 2967) background to generate rust resistant carotenoid biofortified bread wheat. Agro-morphological characterization was also performed on a subset of developed 70 lines having enhanced grain carotene content. In the introgression lines, carotenoid profiling using HPLC analysis demonstrated a considerable increase in ß-carotene levels (up to 12 ppm). Thus, the developed germplasm caters the threat to nutritional security and can be utilized to produce carotenoid fortified wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01338-0.

4.
Genes (Basel) ; 12(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34828414

RESUMO

Farmers in northwestern and central India have been exploring to sow their wheat much earlier (October) than normal (November) to sustain productivity by escaping terminal heat stress and to utilize the available soil moisture after the harvesting of rice crop. However, current popular varieties are poorly adapted to early sowing due to the exposure of juvenile plants to the warmer temperatures in the month of October and early November. Therefore, a study was undertaken to identify wheat genotypes suited to October sowing under warmer temperatures in India. A diverse collection of 3322 bread wheat varieties and elite lines was prepared in CIMMYT, Mexico, and planted in the 3rd week of October during the crop season 2012-2013 in six locations (Ludhiana, Karnal, New Delhi, Indore, Pune and Dharwad) spread over northwestern plains zone (NWPZ) and central and Peninsular zone (CZ and PZ; designated as CPZ) of India. Agronomic traits data from the seedling stage to maturity were recorded. Results indicated substantial diversity for yield and yield-associated traits, with some lines showing indications of higher yields under October sowing. Based on agronomic performance and disease resistance, the top 48 lines (and two local checks) were identified and planted in the next crop season (2013-2014) in a replicated trial in all six locations under October sowing (third week). High yielding lines that could tolerate higher temperature in October sowing were identified for both zones; however, performance for grain yield was more promising in the NWPZ. Hence, a new trial of 30 lines was planted only in NWPZ under October sowing. Lines showing significantly superior yield over the best check and the most popular cultivars in the zone were identified. The study suggested that agronomically superior wheat varieties with early heat tolerance can be obtained that can provide yield up to 8 t/ha by planting in the third to fourth week of October.


Assuntos
Produção Agrícola/métodos , Termotolerância , Triticum/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genótipo , Índia , Característica Quantitativa Herdável , Estações do Ano , Triticum/genética , Triticum/fisiologia
5.
Sci Rep ; 8(1): 13526, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201978

RESUMO

Wheat is an important staple that acts as a primary source of dietary energy, protein, and essential micronutrients such as iron (Fe) and zinc (Zn) for the world's population. Approximately two billion people suffer from micronutrient deficiency, thus breeders have crossed high Zn progenitors such as synthetic hexaploid wheat, T. dicoccum, T. spelta, and landraces to generate wheat varieties with competitive yield and enhanced grain Zn that are being adopted by farmers in South Asia. Here we report a genome-wide association study (GWAS) using the wheat Illumina iSelect 90 K Infinitum SNP array to characterize grain Zn concentrations in 330 bread wheat lines. Grain Zn phenotype of this HarvestPlus Association Mapping (HPAM) panel was evaluated across a range of environments in India and Mexico. GWAS analysis revealed 39 marker-trait associations for grain Zn. Two larger effect QTL regions were found on chromosomes 2 and 7. Candidate genes (among them zinc finger motif of transcription-factors and metal-ion binding genes) were associated with the QTL. The linked markers and associated candidate genes identified in this study are being validated in new biparental mapping populations for marker-assisted breeding.


Assuntos
Biofortificação , Grão Comestível/genética , Locos de Características Quantitativas , Triticum/genética , Zinco/análise , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/química , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Índia , México , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Polimorfismo de Nucleotídeo Único , Sementes/química , Sementes/genética , Triticum/química , Dedos de Zinco/genética
6.
Theor Appl Genet ; 129(8): 1595-605, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27170319

RESUMO

KEY MESSAGE: Predictability estimated through cross-validation approach showed moderate to high level; hence, genomic selection approach holds great potential for biofortification breeding to enhance grain zinc and iron concentrations in wheat. Wheat (Triticum aestivum L.) is a major staple crop, providing 20 % of dietary energy and protein consumption worldwide. It is an important source of mineral micronutrients such as zinc (Zn) and iron (Fe) for resource poor consumers. Genomic selection (GS) approaches have great potential to accelerate development of Fe- and Zn-enriched wheat. Here, we present the results of large-scale genomic and phenotypic data from the HarvestPlus Association Mapping (HPAM) panel consisting of 330 diverse wheat lines to perform genomic predictions for grain Zn (GZnC) and Fe (GFeC) concentrations, thousand-kernel weight (TKW) and days to maturity (DTM) in wheat. The HPAM lines were phenotyped in three different locations in India and Mexico in two successive crop seasons (2011-12 and 2012-13) for GZnC, GFeC, TKW and DTM. The genomic prediction models revealed that the estimated prediction abilities ranged from 0.331 to 0.694 for Zn and from 0.324 to 0.734 for Fe according to different environments, whereas prediction abilities for TKW and DTM were as high as 0.76 and 0.64, respectively, suggesting that GS holds great potential in biofortification breeding to enhance grain Zn and Fe concentrations in bread wheat germplasm.


Assuntos
Ferro/análise , Sementes/anatomia & histologia , Triticum/genética , Zinco/análise , DNA de Plantas/genética , Meio Ambiente , Genoma de Planta , Genótipo , Índia , México , Modelos Genéticos , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA