Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 6(6): 977-85, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-26262856

RESUMO

The performance of photoelectrodes can be modified by changing the material chemistry, geometry, and interface engineering. Specifically, nanoscale active layers can facilitate the collection of charge carriers. In heterostructure devices, the multiple material interfaces are particularly important, which at present are not well understood for oxides. Here, we report a detailed study of ultrathin (2-25 nm) LaFeO3 films grown epitaxially on Nb-doped SrTiO3. The films exhibit thickness-dependence with sensitivity to less than 10 nm in both the through-plane charge transfer conductivity and in the potential-dependent photoresponse. Supplementing photoelectrochemical measurements with X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and electrochemical impedance spectroscopy, we construct a band model that accounts for this thickness dependence via a shifting valence-band offset at the film-substrate interface and the potential-dependent overlap of the depletion regions present at both the film-substrate and film-electrolyte interfaces. These results illustrate the utility of using active layer thickness and film-substrate interactions to tune the performance of photoelectrodes, providing insight for the design of efficient heterostructure oxide photoelectrochemical devices.

2.
Phys Chem Chem Phys ; 16(19): 9023-30, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695759

RESUMO

Hierarchically organized mesoporous carbon-TiO2 inverse opal nanostructures were synthesized by complementary colloid and block copolymer (BCP) self-assembly, where the triblock copolymer P123 acts simultaneously as the template and the carbon source. Highly ordered mesoporous inverse opal nanostructures with a nano-textured surface morphology and multiple-length scale nanopores provide increased light-activated surface area and scattering effects, leading to enhanced photoabsorption efficiency and the transport of matter. UV-vis absorption, X-ray photoelectron spectroscopy and Mott-Schottky measurement studies show that incorporation of carbon moieties into TiO2via direct conversion of BCPs creates a new energy level above the valence band of TiO2, resulting in an effective decrease in the band gap. A significantly enhanced visible light photocatalytic activity was demonstrated for the mesoporous carbon-TiO2 inverse opals in terms of the degradation of p-nitrophenol (~79%) and photoelectrochemical water splitting (~0.087%).

3.
Nat Commun ; 4: 2439, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24042731

RESUMO

The electronic structure of transition metal oxides governs the catalysis of many central reactions for energy storage applications such as oxygen electrocatalysis. Here we exploit the versatility of the perovskite structure to search for oxide catalysts that are both active and stable. We report double perovskites (Ln0.5Ba0.5)CoO(3-δ) (Ln=Pr, Sm, Gd and Ho) as a family of highly active catalysts for the oxygen evolution reaction upon water oxidation in alkaline solution. These double perovskites are stable unlike pseudocubic perovskites with comparable activities such as Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) which readily amorphize during the oxygen evolution reaction. The high activity and stability of these double perovskites can be explained by having the O p-band centre neither too close nor too far from the Fermi level, which is computed from ab initio studies.

4.
J Phys Chem Lett ; 3(3): 399-404, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26285858

RESUMO

The activities of the oxygen evolution reaction (OER) on iridium-oxide- and ruthenium-oxide-based catalysts are among the highest known to date. However, the OER activities of thermodynamically stable rutile iridium oxide (r-IrO2) and rutile iridium oxide (r-RuO2), normalized to catalyst mass or true surface area are not well-defined. Here we report a synthesis of r-IrO2 and r-RuO2 nanoparticles (NPs) of ∼6 nm, and examine their OER activities in acid and alkaline solutions. Both r-IrO2 and r-RuO2 NPs were highly active for OER, with r-RuO2 exhibiting up to 10 A/goxide at 1.48 V versus reversible hydrogen electrode. When comparing the two, r-RuO2 NPs were found to have slightly higher intrinsic and mass OER activities than r-IrO2 in both acid and basic solutions. Interestingly, these oxide NPs showed higher stability under OER conditions than commercial Ru/C and Ir/C catalysts. Our study shows that these r-RuO2 and r-IrO2 NPs can serve as a benchmark in the development of active OER catalysts for electrolyzers, metal-air batteries, and photoelectrochemical water splitting applications.

5.
Science ; 334(6061): 1383-5, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22033519

RESUMO

The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA