Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Med ; 16(1): 27, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331891

RESUMO

BACKGROUND: Interactions between the gut microbiota, diet, and host metabolism contribute to the development of cardiovascular disease, but a firm link between disease-specific gut microbiota alterations and circulating metabolites is lacking. METHODS: We performed shot-gun sequencing on 235 samples from 166 HF patients and 69 healthy control samples. Separate plasma samples from healthy controls (n = 53) were used for the comparison of imidazole propionate (ImP) levels. Taxonomy and functional pathways for shotgun sequencing data was assigned using MetaPhlAn3 and HUMAnN3 pipelines. RESULTS: Here, we show that heart failure (HF) is associated with a specific compositional and functional shift of the gut microbiota that is linked to circulating levels of the microbial histidine-derived metabolite ImP. Circulating ImP levels are elevated in chronic HF patients compared to controls and associated with HF-related gut microbiota alterations. Contrary to the microbiota composition, ImP levels provide insight into etiology and severity of HF and also associate with markers of intestinal permeability and systemic inflammation. CONCLUSIONS: Our findings establish a connection between changes in the gut microbiota, the presence, etiology, and severity of HF, and the gut-microbially produced metabolite ImP. While ImP appears promising as a circulating biomarker reflecting gut dysbiosis related to HF, further studies are essential to demonstrate its causal or contributing role in HF pathogenesis. TRIAL REGISTRATION: NCT02637167, registered December 22, 2015.


Assuntos
Insuficiência Cardíaca , Microbiota , Humanos , Disbiose , Insuficiência Cardíaca/metabolismo , Imidazóis , Gravidade do Paciente
2.
Front Cardiovasc Med ; 10: 1160030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332580

RESUMO

Background: The gut microbiota in patients with chronic heart failure (HF) is characterized by low bacterial diversity and reduced ability to synthesize beneficial metabolites. These changes may facilitate leakage of whole bacteria or bacterial products from the gut into the bloodstream, which may activate the innate immune system and contribute to the low-grade inflammation seen in HF. In this exploratory cross-sectional study, we aimed to investigate relationships between gut microbiota diversity, markers of gut barrier dysfunction, inflammatory markers, and cardiac function in chronic HF patients. Methods: In total, 151 adult patients with stable HF and left ventricular ejection fraction (LVEF) < 40% were enrolled. We measured lipopolysaccharide (LPS), LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and soluble cluster of differentiation 14 (sCD14) as markers of gut barrier dysfunction. N-terminal pro-B-type natriuretic peptide (NT-proBNP) level above median was used as a marker of severe HF. LVEF was measured by 2D-echocardiography. Stool samples were sequenced using 16S ribosomal RNA gene amplification. Shannon diversity index was used as a measure of microbiota diversity. Results: Patients with severe HF (NT-proBNP > 895 pg/ml) had increased I-FABP (p < 0.001) and LBP (p = 0.03) levels. ROC analysis for I-FABP yielded an AUC of 0.70 (95% CI 0.61-0.79, p < 0.001) for predicting severe HF. A multivariate logistic regression model showed increasing I-FABP levels across quartiles of NT-proBNP (OR 2.09, 95% CI 1.28-3.41, p = 0.003). I-FABP was negatively correlated with Shannon diversity index (rho = -0.30, p = <0.001), and the bacterial genera Ruminococcus gauvreauii group, Bifidobacterium, Clostridium sensu stricto, and Parasutterella, which were depleted in patients with severe HF. Conclusions: In patients with HF, I-FABP, a marker of enterocyte damage, is associated with HF severity and low microbial diversity as part of an altered gut microbiota composition. I-FABP may reflect dysbiosis and may be a marker of gut involvement in patients with HF.

3.
EBioMedicine ; 70: 103511, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34329947

RESUMO

BACKGROUND: The gut microbiota represents a potential treatment target in heart failure (HF) through microbial metabolites such as trimethylamine N-oxide (TMAO) and systemic inflammation. Treatment with the probiotic yeast Saccharomyces boulardii have been suggested to improve left ventricular ejection fraction (LVEF). METHODS: In a multicentre, prospective randomized open label, blinded end-point trial, we randomized patients with LVEF <40% and New York Heart Association functional class II or III, despite optimal medical therapy, to treatment (1:1:1) with the probiotic yeast Saccharomyces boulardii, the antibiotic rifaximin, or standard of care (SoC) only. The primary endpoint, the baseline-adjusted LVEF at three months, was assessed in an intention-to-treat analysis. FINDINGS: We enrolled a total of 151 patients. After three months' treatment, the LVEF did not differ significantly between the SoC arm and the rifaximin arm (mean difference was -1•2 percentage points; 95% CI -3•2 - 0•7; p=0•22) or between the SoC arm and the Saccharomyces boulardii arm (mean difference -0•2 percentage points; 95% CI -2•2 - 1•9; p=0•87). We observed no significant between-group differences in changes in microbiota diversity, TMAO, or C-reactive protein. INTERPRETATION: Three months' treatment with Saccharomyces boulardii or rifaximin on top of SoC had no significant effect on LVEF, microbiota diversity, or the measured biomarkers in our population with HF. FUNDING: The trial was funded by the Norwegian Association for Public Health, the Blix foundation, Stein Erik Hagen's Foundation for Clinical Heart Research, Ada og Hagbart Waages humanitære og veldedige stiftelse, Alfasigma, and Biocodex.


Assuntos
Antibacterianos/uso terapêutico , Microbioma Gastrointestinal , Insuficiência Cardíaca/microbiologia , Probióticos/uso terapêutico , Rifaximina/uso terapêutico , Saccharomyces boulardii/patogenicidade , Idoso , Débito Cardíaco , Teste de Esforço , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Padrão de Cuidado
4.
ESC Heart Fail ; 7(2): 456-466, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978943

RESUMO

AIMS: Recent reports have suggested that patients with heart failure (HF) have an altered gut microbiota composition; however, associations with diet remain largely uninvestigated. We aimed to explore differences in the gut microbiota between patients with HF with reduced ejection fraction and healthy controls, focusing on associations with diet and disease severity. METHODS AND RESULTS: The microbiota composition of two cross-sectional cohorts (discovery, n = 40 and validation, n = 44) of patients with systolic HF and healthy controls (n = 266) was characterized by sequencing of the bacterial 16S rRNA gene. The overall microbial community (beta diversity) differed between patients with HF and healthy controls in both cohorts (P < 0.05). Patients with HF had shifts in the major bacterial phyla, resulting in a lower Firmicutes/Bacteroidetes (F/B) ratio than controls (P = 0.005). Patients reaching a clinical endpoint (listing for heart transplant or death) had lower bacterial richness and lower F/B ratio than controls (P < 0.01). Circulating levels of trimethylamine-N-oxide were associated with meat intake (P = 0.016), but not with gut microbiota alterations in HF. Low bacterial richness and low abundance of several genera in the Firmicutes phylum were associated with low fibre intake. CONCLUSIONS: The gut microbiota in HF was characterized by decreased F/B ratio and reduced bacterial diversity associated with clinical outcome. The gut microbiota alterations in HF were partly related to low fibre intake, emphasizing the importance of diet as a covariate in future studies. Our data could provide a rationale for targeting the gut microbiota in HF with high-fibre diet.


Assuntos
Microbioma Gastrointestinal , Insuficiência Cardíaca , Microbiota , Estudos Transversais , Humanos , RNA Ribossômico 16S
5.
J Heart Lung Transplant ; 38(10): 1097-1103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301965

RESUMO

BACKGROUND: Alterations in the partly microbiota-dependent carnitine-γ-butyrobetaine (γBB)-trimethylamine N-oxide (TMAO) pathway have been linked to the progression of heart failure and atherosclerotic disease. We evaluated if circulating γBB, TMAO, and their common precursors carnitine and trimethyllysine (TML) were dysregulated after heart transplantation and associated with development of cardiac allograft vasculopathy (CAV) and acute rejection. METHODS: We measured these metabolites in plasma from heart transplant recipients with everolimus-based (n = 32) and standard cyclosporine-based immunosuppression (n = 30) at different time-points and accompanied by assessment of CAV by intravascular ultrasound. RESULTS: Baseline levels of carnitine, TMAO, and TML were elevated in heart transplant recipients compared with controls, and TML remained elevated throughout the observation period. The microbiota-dependent metabolite γBB increased steadily during 3 years of follow-up, with a similar decrease in its endogenous precursor TML. The increase in γBB and the change in TML were associated with a change in total atheroma volume from baseline to 3 years. Increases in γBB and carnitine levels from baseline to 1 year were associated with an increased frequency of acute rejection within the first year after heart transplant. CONCLUSIONS: Our study reveals alterations of the carnitine-γBB-TMAO pathway after heart transplant, with increasing levels of γBB being associated with acute rejection and increase in total atheroma volume during 3 years of follow-up. Future studies should clarify whether interactions between dietary factors, immunosuppressive drugs, and the gut microbiota could influence acute rejection and CAV development to delineate mechanisms and potential novel treatment targets.


Assuntos
Betaína/análogos & derivados , Carnitina/sangue , Doença da Artéria Coronariana/sangue , Rejeição de Enxerto/sangue , Transplante de Coração , Metilaminas/sangue , Complicações Pós-Operatórias/sangue , Doença Aguda , Adulto , Idoso , Betaína/sangue , Ciclosporina/uso terapêutico , Everolimo/uso terapêutico , Feminino , Humanos , Imunossupressores/uso terapêutico , Masculino , Microbiota , Pessoa de Meia-Idade
7.
ESC Heart Fail ; 5(5): 977-984, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30088346

RESUMO

AIMS: Heart failure (HF) is a multifactorial disease. Current treatments target only a fraction of the putative pathophysiological pathways. In patients with HF, reduced cardiac output and congestion cause increased gut wall permeability. It has been suggested that leakage of microbial products is detrimental to the heart, at least partly through activation of systemic inflammatory pathways, which again could promote gut leakage. Whether manipulating the gut microbiota can improve cardiac function in patients with HF remains unknown. We aim to evaluate the effect of drugs targeting the gut microbiota on left ventricular function, quality of life, and functional capacity, as well as on markers of gut leakage and inflammation, in stable patients with HF with reduced ejection fraction. METHODS AND RESULTS: GutHeart is a randomized, open-label, controlled trial. Four centres will randomize 150 patients with stable HF and a left ventricular ejection fraction <40% to receive the antibiotic rifaximin, the probiotic yeast Saccharomyces boulardii (ATCC 74012), or no treatment (control) in a 1:1:1 fashion. Treatment will last for 3 months. The primary endpoint is baseline-adjusted left ventricular ejection fraction as measured by echocardiography after 3 months. A further follow-up 6 months after randomization will be undertaken. CONCLUSIONS: This trial is likely to give new insights into important disease processes involving the gut microbiota in HF patients, hereby leading to new potential therapeutic strategies to prevent and down-regulate the inflammation seen in these patients.


Assuntos
Ensaios Clínicos Fase II como Assunto/métodos , Microbioma Gastrointestinal , Insuficiência Cardíaca/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Saccharomyces boulardii , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia , Insuficiência Cardíaca/fisiopatologia , Humanos
9.
J Card Fail ; 23(9): 666-671, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28688889

RESUMO

OBJECTIVE: Bile acids (BAs) are now recognized as signaling molecules and emerging evidence suggests that BAs affect cardiovascular function. The gut microbiota has recently been linked to the severity of heart failure (HF), and microbial metabolism has a major impact on BA homeostasis. We aimed to investigate the pattern of BAs, and particularly microbiota-transformed (secondary) BAs, in patients with chronic HF. METHODS AND RESULTS: This was a prospective, observational, single-center study including 142 patients with chronic HF and 20 age- and sex-matched healthy control subjects. We measured plasma levels of primary, secondary, and total BAs, and explored their associations with clinical characteristics and survival. Plasma levels of primary BAs were lower (P < .01) and the ratios of secondary to primary BAs higher (P < .001) in patients with HF compared with control subjects. Approximately 40% of patients in the upper tertile of the ratio of secondary to primary BAs died during 5.6 years of follow-up (unadjusted Cox regression: hazard ratio 1.93, 95% confidence interval 1.01-3.68, compared with the lower tertiles). However, this association was attenuated and no longer significant in multivariate analyses. CONCLUSIONS: Levels of primary BAs were reduced and specific secondary BAs increased in patients with chronic HF. This pattern was associated with reduced overall survival in univariate analysis, but not in multivariate analyses. Future studies should assess the regulation and potential role of BA metabolism in HF.


Assuntos
Ácidos e Sais Biliares/sangue , Microbioma Gastrointestinal/fisiologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/diagnóstico por imagem , Adulto , Idoso , Biomarcadores/sangue , Doença Crônica , Estudos de Coortes , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA