Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Host Microbe ; 32(2): 151-153, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359796

RESUMO

Surging depression rates highlight the need for innovative strategies beyond the traditional focus on the brain. In this issue of Cell Host & Microbe, Cheng et al. uncover a role for the gut microbiota in depression through the intestinal receptor Grp35 and indole pathway, offering hope in fighting against depression.


Assuntos
Microbioma Gastrointestinal , Microbiota , Intestinos , Indóis/farmacologia , Indóis/metabolismo
2.
J Nutr Health Aging ; 28(4): 100190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368845

RESUMO

OBJECTIVES: Iron is important for neurogenesis, synaptic development, and neurotransmitter synthesis. Serum ferritin (SF) is a reliable marker for assessing iron stores. Therefore, we evaluated the cognitive function associated with SF levels. We also assessed brain iron content using R2* Magnetic Resonance Imaging (MRI) and its association with SF levels. DESIGN: Data from three cross-sectional observational studies were used. Aging Imageomics (n = 1030) was conducted on aged subjects. Health Imageomics (n = 971) and IR0NMET (n = 175) were conducted in middle-aged subjects. SETTING AND PARTICIPANTS: Participants were enrolled at Dr. Josep Trueta University Hospital facilities. The three cohorts included a total of 2176 subjects (mean age, 52 years; 48% men). MEASUREMENTS: SF levels were measured by standard laboratory methods. Total Digits Span (TDS), and Phonemic Verbal Fluency (PVF) were used to assess executive function. Language function was assessed by semantic verbal fluency (SVF), attention by the Symbol Digit Modalities Test, and memory by the Memory Binding Tests - Total Free Recall and Total Delayed Free Recall. MRI was used to assess the iron content of the brain by R2*. RESULTS: In subjects aged 65 years or older, SF levels were associated with increased TDS (ß = 0.003, p = 0.02), PVF (ß = 0.004, p = 0.01), and SVF (ß = 0.004, p = 0.002) scores. After stratification by sex, these findings were significant only in men, where SF was associated with increased TDS (ß = 0.003, p = 0.01), PVF (ß = 0.004, p = 0.03), and SVF (ß = 0.004, p = 0.009) scores. In middle-aged subjects, SF was also associated with increased SVF scores (ß = 0.005, p = 0.011). Lastly, in men, SF levels were negatively associated with R2*, a surrogate marker of brain iron content, in both the left frontal inferior opercular area (r = -0.41, p = 0.005) and the right frontal inferior opercular area (r = -0.44, p = 0.002). CONCLUSIONS: SF is significantly and positively associated with cognition. In older people with low SF levels, iron supplementation may be a promising therapy to improve cognition.


Assuntos
Envelhecimento , Encéfalo , Cognição , Ferritinas , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Ferritinas/sangue , Estudos Transversais , Pessoa de Meia-Idade , Cognição/fisiologia , Envelhecimento/fisiologia , Idoso , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/sangue , Ferro/sangue , Biomarcadores/sangue , Função Executiva/fisiologia , Testes Neuropsicológicos
3.
Gut Microbes ; 15(2): 2290318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059755

RESUMO

Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.


Assuntos
Microbioma Gastrointestinal , Humanos , Espectrometria de Massas em Tandem , Cognição , Bactérias/genética , Metaboloma , Fenilalanina , Ferro , Ferritinas
4.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38118419

RESUMO

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Histidina/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Dieta Hiperlipídica
5.
Nat Commun ; 14(1): 5329, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658064

RESUMO

Dietary lipids can affect metabolic health through gut microbiota-mediated mechanisms, but the influence of lipid-microbiota interaction on liver steatosis is largely unknown. We investigate the impact of dietary lipids on human gut microbiota composition and the effects of microbiota-lipid interactions on steatosis in male mice. In humans, low intake of saturated fatty acids (SFA) is associated with increased microbial diversity independent of fiber intake. In mice, poorly absorbed dietary long-chain SFA, particularly stearic acid, induce a shift in bile acid profile and improved metabolism and steatosis. These benefits are dependent on the gut microbiota, as they are transmitted by microbial transfer. Diets enriched in polyunsaturated fatty acids are protective against steatosis but have minor influence on the microbiota. In summary, we find that diets enriched in poorly absorbed long-chain SFA modulate gut microbiota profiles independent of fiber intake, and this interaction is relevant to improve metabolism and decrease liver steatosis.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Animais , Camundongos , Ácidos Graxos , Ácidos e Sais Biliares , Gorduras na Dieta
6.
Biomed Pharmacother ; 166: 115428, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37677967

RESUMO

The association among increased inflammation, disrupted iron homeostasis, and adipose tissue dysfunction in obesity has been widely recognized. However, the specific impact of inflammation on iron homeostasis during human adipogenesis and in adipocytes remains poorly understood. In this study, we investigated the effects of bacterial lipopolysaccharide (LPS) on iron homeostasis during human adipocyte differentiation, in fully differentiated adipocytes, and in human adipose tissue. We found that LPS-induced inflammation hindered adipogenesis and led to a gene expression profile indicative of intracellular iron accumulation. This was accompanied by increased expression of iron importers (TFRC and SLC11A2), markers of intracellular iron accumulation (FTH, CYBA, FTL, and LCN2), and decreased expression of iron exporter-related genes (SLC40A1), concomitant with elevated intracellular iron levels. Mechanistically, RNA-seq analysis and gene knockdown experiments revealed the significant involvement of iron importers SLC39A14, SLC39A8, and STEAP4 in LPS-induced intracellular iron accumulation in human adipocytes. Notably, markers of LPS signaling pathway-related inflammation were also associated with a gene expression pattern indicative of intracellular iron accumulation in human adipose tissue, corroborating the link between LPS-induced inflammation and iron accumulation at the tissue level. In conclusion, our findings demonstrate that induction of adipocyte inflammation disrupts iron homeostasis, resulting in adipocyte iron overload.


Assuntos
Adipócitos , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Tecido Adiposo , Inflamação , Ferro
7.
Sci Adv ; 9(32): eadg4017, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566655

RESUMO

Obesity is associated with cognitive decline. Recent observations in mice propose an adipose tissue (AT)-brain axis. We identified 188 genes from RNA sequencing of AT in three cohorts that were associated with performance in different cognitive domains. These genes were mostly involved in synaptic function, phosphatidylinositol metabolism, the complement cascade, anti-inflammatory signaling, and vitamin metabolism. These findings were translated into the plasma metabolome. The circulating blood expression levels of most of these genes were also associated with several cognitive domains in a cohort of 816 participants. Targeted misexpression of candidate gene ortholog in the Drosophila fat body significantly altered flies memory and learning. Among them, down-regulation of the neurotransmitter release cycle-associated gene SLC18A2 improved cognitive abilities in Drosophila and in mice. Up-regulation of RIMS1 in Drosophila fat body enhanced cognitive abilities. Current results show previously unidentified connections between AT transcriptome and brain function in humans, providing unprecedented diagnostic/therapeutic targets in AT.


Assuntos
Cognição , Obesidade , Humanos , Animais , Camundongos , Obesidade/metabolismo , Encéfalo/metabolismo , Drosophila/genética , Tecido Adiposo/metabolismo
8.
Antioxidants (Basel) ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37237999

RESUMO

Here, we report on our study of plasma lipidomics profiles of patients with type 1 diabetes (T1DM) and explore potential associations. One hundred and seven patients with T1DM were consecutively recruited. Ultrasound imaging of peripheral arteries was performed using a high image resolution B-mode ultrasound system. Untargeted lipidomics analysis was performed using UHPLC coupled to qTOF/MS. The associations were evaluated using machine learning algorithms. SM(32:2) and ether lipid species (PC(O-30:1)/PC(P-30:0)) were significantly and positively associated with subclinical atherosclerosis (SA). This association was further confirmed in patients with overweight/obesity (specifically with SM(40:2)). A negative association between SA and lysophosphatidylcholine species was found among lean subjects. Phosphatidylcholines (PC(40:6) and PC(36:6)) and cholesterol esters (ChoE(20:5)) were associated positively with intima-media thickness both in subjects with and without overweight/obesity. In summary, the plasma antioxidant molecules SM and PC differed according to the presence of SA and/or overweight status in patients with T1DM. This is the first study showing the associations in T1DM, and the findings may be useful in the targeting of a personalized approach aimed at preventing cardiovascular disease in these patients.

9.
J Clin Endocrinol Metab ; 108(11): 2931-2939, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37159524

RESUMO

CONTEXT: Sleep disruption is associated with worse glucose metabolic control and altered gut microbiota in animal models. OBJECTIVE: We aimed to evaluate the possible links among rapid eye movement (REM) sleep duration, continuous glucose levels, and gut microbiota composition. METHODS: This observational, prospective, real-life, cross-sectional case-control study included 118 (60 with obesity), middle-aged (39.1-54.8 years) healthy volunteers recruited at a tertiary hospital. Glucose variability and REM sleep duration were assessed by 10-day continuous glucose monitoring (CGM) (Dexcom G6) and wrist actigraphy (Fitbit Charge 3), respectively. The coefficient of variation (CV), interquartile range (IQR), and SD of glucose variability was assessed and the percentage of time in range (% TIR), at 126-139 mg/dL (TIR2), and 140-199 mg/dL (TIR3) were calculated. Shotgun metagenomics sequencing was applied to study gut microbiota taxonomy and functionality. RESULTS: Increased glycemic variability (SD, CV, and IQR) was observed among subjects with obesity in parallel to increased % TIR2 and % TIR3. REM sleep duration was independently associated with % TIR3 (ß = -.339; P < .001) and glucose variability (SD, ß = -.350; P < .001). Microbial taxa from the Christensenellaceae family (Firmicutes phylum) were positively associated with REM sleep and negatively with CGM levels, while bacteria from Enterobacteriacea family and bacterial functions involved in iron metabolism showed opposite associations. CONCLUSION: Decreased REM sleep duration was independently associated with a worse glucose profile. The associations of species from Christensenellaceae and Enterobacteriaceae families with REM sleep duration and continuous glucose values suggest an integrated picture of metabolic health.


Assuntos
Microbioma Gastrointestinal , Sono REM , Humanos , Pessoa de Meia-Idade , Glicemia/metabolismo , Automonitorização da Glicemia , Estudos de Casos e Controles , Estudos Transversais , Glucose , Obesidade , Estudos Prospectivos , Duração do Sono , Adulto
11.
Aging Cell ; 22(6): e13821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951231

RESUMO

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Assuntos
Aminoácidos Aromáticos , Metaboloma , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Aminoácidos Aromáticos/metabolismo , Envelhecimento/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo
12.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769208

RESUMO

The consumption of diets rich in saturated fats is known to be associated with higher mortality. The adoption of healthy habits, for instance adhering to a Mediterranean diet, has proved to exert a preventive effect towards cardiovascular diseases and dyslipidemia. Little is known about how a suboptimal diet can affect brain function, structure, and the mechanisms involved. The aims of this study were to examine how a high-fat diet can alter the brain N-glycan and lipid profile in male Golden Syrian hamsters and to evaluate the potential of a Mediterranean-like diet to reverse this situation. During twelve weeks, hamsters were fed a normal fat diet (CTRL group), a high-fat diet (HFD group), and a high-fat diet followed by a Mediterranean-like diet (MED group). Out of seventy-two identified N-glycans, fourteen were significant (p < 0.05) between HFD and CTRL groups, nine between MED and CTRL groups, and one between MED and HFD groups. Moreover, forty-nine lipids were altered between HFD and CTRL groups, seven between MED and CTRL groups, and five between MED and HFD groups. Our results suggest that brain N-glycan composition in high-fat diet-fed hamsters can produce events comparable to those found in some neurodegenerative diseases, and may promote brain ageing.


Assuntos
Dieta Hiperlipídica , Dislipidemias , Cricetinae , Animais , Masculino , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Lipidômica , Glicosilação , Mesocricetus , Dislipidemias/etiologia , Dislipidemias/metabolismo , Encéfalo , Fígado/metabolismo
13.
Pharmacol Res ; 187: 106562, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410673

RESUMO

Lipopolysaccharide binding protein (LBP) knockout mice models are protected against the deleterious effects of major acute inflammation but its possible physiological role has been less well studied. We aimed to evaluate the impact of liver LBP downregulation (using nanoparticles containing siRNA- Lbp) on liver steatosis, inflammation and fibrosis during a standard chow diet (STD), and in pathological non-obesogenic conditions, under a methionine and choline deficient diet (MCD, 5 weeks). Under STD, liver Lbp gene knockdown led to a significant increase in gene expression markers of liver inflammation (Itgax, Tlr4, Ccr2, Ccl2 and Tnf), liver injury (Krt18 and Crp), fibrosis (Col4a1, Col1a2 and Tgfb1), endoplasmic reticulum (ER) stress (Atf6, Hspa5 and Eif2ak3) and protein carbonyl levels. As expected, the MCD increased hepatocyte vacuolation, liver inflammation and fibrosis markers, also increasing liver Lbp mRNA. In this model, liver Lbp gene knockdown resulted in a pronounced worsening of the markers of liver inflammation (also including CD68 and MPO activity), fibrosis, ER stress and protein carbonyl levels, all indicative of non-alcoholic steatohepatitis (NASH) progression. At cellular level, Lbp gene knockdown also increased expression of the proinflammatory mediators (Il6, Ccl2), and markers of fibrosis (Col1a1, Tgfb1) and protein carbonyl levels. In agreement with these findings, liver LBP mRNA in humans positively correlated with markers of liver damage (circulating hsCRP, ALT activity, liver CRP and KRT18 gene expression), and with a network of genes involved in liver inflammation, innate and adaptive immune system, endoplasmic reticulum stress and neutrophil degranulation (all with q-value<0.05). In conclusion, current findings suggest that a significant downregulation in liver LBP levels promotes liver oxidative stress and inflammation, aggravating NASH progression, in physiological and pathological non-obesogenic conditions.


Assuntos
Cirrose Hepática , Fígado , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Inflamação/genética , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , RNA Mensageiro/metabolismo
14.
Antioxidants (Basel) ; 11(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358551

RESUMO

Dipeptidyl peptidase 9 (DPP9) is a member of the dipeptidyl peptidase IV family. Inhibition of DPP9 has recently been shown to activate the nucleotide-binding domain leucine-rich repeat 1 (NLRP1) inflammasome. NLRP1 is known to bind nucleic acids with high affinity and directly interact with double stranded RNA, which plays a key role in viral replication. DPP9 has also recently emerged as a key gene related to lung-inflammation in critical SARS-CoV-2 infection. Importantly, DPP9 activity is strongly dependent on the oxidative status. Here, we explored the potential role of DPP9 in the gastrointestinal tract. We performed transcriptomics analyses of colon (microarray, n = 37) and jejunal (RNA sequencing, n = 31) biopsies from two independent cohorts as well as plasma metabolomics analyses in two independent cohorts (n = 37 and n = 795). The expression of DPP9 in the jejunum, colon, and blood was significantly associated with circulating biomarkers of oxidative stress (uric acid, bilirubin). It was also associated positively with the expression of transcription factors (NRF-2) and genes (SOD, CAT, GPX) encoding for antioxidant enzymes, but negatively with that of genes (XDH, NOX) and transcription factors (NF-KB) involved in ROS-generating enzymes. Gene co-expression patterns associated with DPP9 identified several genes participating in antiviral pathways in both tissues. Notably, DPP9 expression in the colon and plasma was strongly positively associated with several circulating nucleotide catabolites (hypoxanthine, uric acid, 3-ureidopropionic acid) with important roles in the generation of ROS and viral infection, as well as other metabolites related to oxidative stress (Resolvin D1, glutamate-containing dipeptides). Gene-drug enrichment analyses identified artenimol, puromycin, anisomycin, 3-phenyllactic acid, and linezolid as the most promising drugs targeting these DPP9-associated genes. We have identified a novel potential pathogenic mechanism of viral infection in the digestive tract and promising existing drugs that can be repositioned against viral infection.

15.
EBioMedicine ; 85: 104302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206624

RESUMO

BACKGROUND: Adipose tissue is a source of multiple factors that modulate systemic insulin sensitivity and cardiovascular risk. Taurine is obtained from the diet but it is less known that it is endogenously synthesized by cysteine dioxygenase type 1 (CDO1). CDO1 exerts a role in adipose tissue from rodent models, but the potential translational value in humans is not available in the literature. METHODS: CDO1 gene expression was analysed in visceral and subcutaneous adipose tissue samples in association with metabolic traits in participants with different degrees of obesity in four independent cohorts. CDO1 was also evaluated in isolated human adipocytes in vitro. Mechanistically, CDO1gene knockdown (KD) of human preadipocytes and adipose-derived mesenchymal stem cells (ASC52telo) (using lentiviral particles) was also evaluated. Mitochondrial respiratory function of adipocytes was evaluated using Seahorse. FINDINGS: Both visceral (VAT) and subcutaneous adipose tissue (SAT) CDO1 mRNA was associated with gene expression markers of adipose tissue function in the four cohorts. Higher CDO1 expression was linked to decreased fasting triglycerides and blood HbA1c even after adjusting by age, BMI and sex. In addition, CDO1 mRNA positively correlated with the expression of genes involved in adipogenesis and negatively with different inflammatory markers. Both VAT and SAT CDO1 mRNA was mainly expressed in adipocytes and significantly increased during adipocyte differentiation, but attenuated under inflammatory conditions. Mechanistically, CDO1 gene KD reduced taurine biosynthesis, evidencing lower CDO1 activity. In both human preadipocytes and ASC52telo cells, CDO1 gene KD resulted in decreased gene expression markers of adipogenesis (ADIPOQ, FABP4, FASN, SLC2A4, CEBPA) and increased inflammatory genes (TNF and IL6) during adipocyte differentiation. Of note, CDO1 gene KD led to decreased mitochondrial respiratory function in parallel to decreased expression of mitochondrial function-, but not biogenesis-related genes. INTERPRETATION: Current findings show the relevance of CDO1 in adipose tissue physiology, suggesting its contribution to an improved systemic metabolic profile. FUNDING: This work was partially supported by research grants PI16/01173, PI19/01712, PI20/01090 and PI21/01361 from the Instituto de Salud Carlos III from Spain, Fondo Europeo de Desarrollo Regional (FEDER) funds, and VII Spanish Diabetes Association grants to Basic Diabetes Research Projects led by young researchers.


Assuntos
Tecido Adiposo , Cisteína Dioxigenase , Humanos , Adipogenia/genética , Tecido Adiposo/metabolismo , Anti-Inflamatórios/metabolismo , Células Cultivadas , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , RNA Mensageiro/genética , Taurina/metabolismo
16.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36290685

RESUMO

Phenol-rich foods consumption such as virgin olive oil (VOO) has been shown to have beneficial effects on cardiovascular diseases. The broader biochemical impact of VOO and phenol-enriched OOs remains, however, unclear. A randomized, double-blind, cross-over, controlled trial was performed with thirty-three hypercholesterolemic individuals who ingested for 3-weeks (25 mL/day): (1) an OO enriched with its own olive oil phenolic compounds (PCs) (500 ppm; FOO); (2) an OO enriched with its own olive oil PCs (250 ppm) plus thyme PCs (250 ppm; FOOT); and (3) a VOO with low phenolic content (80 ppm). Serum lipid and glycemic profiles, serum 1H-NMR spectroscopy-based metabolomics, endothelial function, blood pressure, and cardiovascular risk were measured. We combined OPLS-DA with machine learning modelling to identify metabolites discrimination of the treatment groups. Both phenol-enriched OO interventions decreased the levels of glutamine, creatinine, creatine, dimethylamine, and histidine in comparison to VOO one. In addition, FOOT decreased the plasma levels of glycine and DMSO2 compared to VOO, while FOO decreased the circulating alanine concentrations but increased the plasma levels of acetone and 3-HB compared to VOO. Based on these findings, phenol-enriched OOs were shown to result in a favorable shift in the circulating metabolic phenotype, inducing a reduction in metabolites associated with cardiometabolic diseases.

17.
Nat Rev Endocrinol ; 18(11): 683-698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35986176

RESUMO

Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.


Assuntos
Ferro , Microbiota , Animais , Bactérias/metabolismo , Glucose/metabolismo , Hepcidinas/metabolismo , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Lipocalina-2/metabolismo
18.
Microbiome ; 10(1): 135, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36002880

RESUMO

BACKGROUND: Succinate is produced by both human cells and by gut bacteria and couples metabolism to inflammation as an extracellular signaling transducer. Circulating succinate is elevated in patients with obesity and type 2 diabetes and is linked to numerous complications, yet no studies have specifically addressed the contribution of gut microbiota to systemic succinate or explored the consequences of reducing intestinal succinate levels in this setting. RESULTS: Using germ-free and microbiota-depleted mouse models, we show that the gut microbiota is a significant source of circulating succinate, which is elevated in obesity. We also show in vivo that therapeutic treatments with selected bacteria diminish the levels of circulating succinate in obese mice. Specifically, we demonstrate that Odoribacter laneus is a promising probiotic based on its ability to deplete succinate and improve glucose tolerance and the inflammatory profile in two independent models of obesity (db/db mice and diet-induced obese mice). Mechanistically, this is partly mediated by the succinate receptor 1. Supporting these preclinical findings, we demonstrate an inverse correlation between plasma and fecal levels of succinate in a cohort of patients with severe obesity. We also show that plasma succinate, which is associated with several components of metabolic syndrome including waist circumference, triglycerides, and uric acid, among others, is a primary determinant of insulin sensitivity evaluated by the euglycemic-hyperinsulinemic clamp. CONCLUSIONS: Overall, our work uncovers O. laneus as a promising next-generation probiotic to deplete succinate and improve glucose tolerance and obesity-related inflammation. Video Abstract.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Animais , Bacteroidetes , Diabetes Mellitus Tipo 2/microbiologia , Dieta Hiperlipídica , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Ácido Succínico
19.
ISME J ; 16(9): 2181-2197, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35729225

RESUMO

Growing evidence implicates the gut microbiome in cognition. Blastocystis is a common gut single-cell eukaryote parasite frequently detected in humans but its potential involvement in human pathophysiology has been poorly characterized. Here we describe how the presence of Blastocystis in the gut microbiome was associated with deficits in executive function and altered gut bacterial composition in a discovery (n = 114) and replication cohorts (n = 942). We also found that Blastocystis was linked to bacterial functions related to aromatic amino acids metabolism and folate-mediated pyrimidine and one-carbon metabolism. Blastocystis-associated shifts in bacterial functionality translated into the circulating metabolome. Finally, we evaluated the effects of microbiota transplantation. Donor's Blastocystis subtypes led to altered recipient's mice cognitive function and prefrontal cortex gene expression. In summary, Blastocystis warrant further consideration as a novel actor in the gut microbiome-brain axis.


Assuntos
Infecções por Blastocystis , Blastocystis , Microbioma Gastrointestinal , Animais , Blastocystis/genética , Infecções por Blastocystis/microbiologia , Infecções por Blastocystis/parasitologia , Cognição , Função Executiva , Humanos , Camundongos
20.
Cell Metab ; 34(5): 681-701.e10, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508109

RESUMO

The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Depressão/metabolismo , Humanos , Camundongos , Prolina , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA