Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35056994

RESUMO

The use of ultrasound and microbubbles to enhance therapeutic efficacy (sonoporation) has shown great promise in cancer therapy from in vitro to ongoing clinical studies. The fastest bench-to-bedside translation involves the use of ultrasound contrast agents (microbubbles) and clinical diagnostic scanners. Despite substantial research in this field, it is currently not known which of these microbubbles result in the greatest enhancement of therapy within the applied conditions. Three microbubble formulations-SonoVue®, Sonazoid™, and Optison™-were physiochemically and acoustically characterized. The microbubble response to the ultrasound pulses used in vivo was simulated via a Rayleigh-Plesset type equation. The three formulations were compared in vitro for permeabilization efficacy in three different pancreatic cancer cell lines, and in vivo, using an orthotopic pancreatic cancer (PDAC) murine model. The mice were treated using one of the three formulations exposed to ultrasound from a GE Logiq E9 and C1-5 ultrasound transducer. Characterisation of the microbubbles showed a rapid degradation in concentration, shape, and/or size for both SonoVue® and Optison™ within 30 min of reconstitution/opening. Sonazoid™ showed no degradation after 1 h. Attenuation measurements indicated that SonoVue® was the softest bubble followed by Sonazoid™ then Optison™. Sonazoid™ emitted nonlinear ultrasound at the lowest MIs followed by Optison™, then SonoVue®. Simulations indicated that SonoVue® would be the most effective bubble using the evaluated ultrasound conditions. This was verified in the pre-clinical PDAC model demonstrated by improved survival and largest tumor growth inhibition. In vitro results indicated that the best microbubble formulation depends on the ultrasound parameters and concentration used, with SonoVue® being best at lower intensities and Sonazoid™ at higher intensities.

2.
Pharmaceutics ; 13(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959319

RESUMO

The use of ultrasound and microbubble-enhanced drug delivery, commonly referred to as sonoporation, has reached numerous clinical trials and has shown favourable results. Nevertheless, the microbubbles and acoustic path also pass through healthy tissues. To date, the majority of studies have focused on the impact to diseased tissues and rarely evaluated the impact on healthy and collateral tissue. The aim of this study was to test the effect and feasibility of low-intensity sonoporation on healthy kidneys in a mouse model. In our work here, we used a clinical diagnostic ultrasound system (GE Vivid E9) with a C1-5 ultrasound transducer combined with a software modification for 20-µs-long pulses to induce the ultrasound-guided drug delivery of doxorubicin (DOX) in mice kidneys in combination with SonoVue® and Sonazoid™ microbubbles. The acoustic output settings were within the commonly used diagnostic ranges. Sonoporation with SonoVue® resulted in a significant decrease in weight vs. DOX alone (p = 0.0004) in the first nine days, whilst all other comparisons were not significant. Ultrasound alone resulted in a 381% increase in DOX uptake vs. DOX alone (p = 0.0004), whilst SonoVue® (p = 0.0001) and Sonazoid™ (p < 0.0001) further increased the uptake nine days after treatment (419% and 493%, respectively). No long-standing damage was observed in the kidneys via histology. In future sonoporation and drug uptake studies, we therefore suggest including an "ultrasound alone" group to verify the actual contribution of the individual components of the procedure on the drug uptake and to perform collateral damage studies to ensure there is no negative impact of low-intensity sonoporation on healthy tissues.

3.
Blood ; 130(6): 789-802, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28619982

RESUMO

The bone marrow (BM) provides a protective microenvironment to support the survival of leukemic cells and influence their response to therapeutic agents. In acute myeloid leukemia (AML), the high rate of relapse may in part be a result of the inability of current treatment to effectively overcome the protective influence of the BM niche. To better understand the effect of the BM microenvironment on drug responses in AML, we conducted a comprehensive evaluation of 304 inhibitors, including approved and investigational agents, comparing ex vivo responses of primary AML cells in BM stroma-derived and standard culture conditions. In the stroma-based conditions, the AML patient cells exhibited significantly reduced sensitivity to 12% of the tested compounds, including topoisomerase II, B-cell chronic lymphocytic leukemia/lymphoma 2 (BCL2), and many tyrosine kinase inhibitors (TKIs). The loss of TKI sensitivity was most pronounced in patient samples harboring FLT3 or PDGFRB alterations. In contrast, the stroma-derived conditions enhanced sensitivity to Janus kinase (JAK) inhibitors. Increased cell viability and resistance to specific drug classes in the BM stroma-derived conditions was a result of activation of alternative signaling pathways mediated by factors secreted by BM stromal cells and involved a switch from BCL2 to BCLXL-dependent cell survival. Moreover, the JAK1/2 inhibitor ruxolitinib restored sensitivity to the BCL2 inhibitor venetoclax in AML patient cells ex vivo in different model systems and in vivo in an AML xenograft mouse model. These findings highlight the potential of JAK inhibitors to counteract stroma-induced resistance to BCL2 inhibitors in AML.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Nitrilas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/farmacologia , Pirimidinas , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA