Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods Mol Biol ; 2853: 17-31, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39460912

RESUMO

Fusion proteins are valuable molecules to meet different demands related to the development of biopharmaceuticals and bioprocesses. In human therapy, they are used to improve the half-life of biologics by modifying the biophysical properties of the proteins. In biotechnology, the design of fusion proteins can standardize the establishment of production clones and the purification process. Analytical detection capabilities of the fusion partner and binding to affinity ligands play a crucial role. For the generation of the recombinant cell line, the maturation of the protein and the secretion are also crucial factors, which can be significantly influenced by the fusion partner and can determine the final yield of the bioprocess. Here we present a protocol to recombine the human extracellular domain of CD19 with the human serum albumin domain 2 resulting in a fusion protein CD19-AD2 including a flexible linker sequence in the interface between the C-terminus of CD19 and the N-terminus of HSA-D2 and a terminal His12-tag. The two fragments are independently amplified with primers allowing to genetically connect the two fragments in the next step by overlap extension PCR. By this strategy, the linker sequence as well as the albumin fragment can be chosen individually to be flexible in the fine-tuning of the final protein. The amplified product is then cloned into a mammalian expression vector suitable to generate a recombinant transient or stable cell culture. This workflow can be applied to any protein sequence by adapting the specific primer sequences.


Assuntos
Antígenos CD19 , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase/métodos , Antígenos CD19/genética , Antígenos CD19/metabolismo , Clonagem Molecular/métodos , Albumina Sérica Humana/genética , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
2.
EBioMedicine ; 96: 104788, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672867

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) and healthy controls received primary SARS-CoV-2-mRNA vaccination and a booster after six months. Anti-TNF-α-treated patients showed significantly lower antibody (Ab) levels and faster waning than α4ß7-integrin-antagonist recipients and controls. This prospective cohort study aimed to elucidate the underlying mechanisms on the basis of circulating T-follicular helper cells (cTfh) and B memory cells. METHODS: We measured SARS-CoV-2- Wuhan and Omicron specific Abs, B- and T-cell subsets at baseline and kinetics of Spike (S)-specific B memory cells along with distributions of activated cTfh subsets before and after primary and booster vaccination. FINDINGS: Lower and faster waning of Ab levels in anti-TNF-α treated IBD patients was associated with low numbers of total and naïve B cells vs. expanded plasmablasts prior to vaccination. Along with their low Ab levels against Wuhan and Omicron VOCs, reduced S-specific B memory cells were identified after the 2nd dose which declined to non-detectable after 6 months. In contrast, IBD patients with α4ß7-integrin-antagonists and controls mounted and retained high Ab levels after the 2nd dose, which was associated with a pronounced increase in S-specific B memory cells that were maintained or expanded up to 6 months. Booster vaccination led to a strong increase of Abs with neutralizing capacity and S-specific B memory cells in these groups, which was not the case in anti-TNF-α treated IBD patients. Of note, Ab levels and S-specific B memory cells in particular post-booster correlated with the activation of cTfh1 cells after primary vaccination. INTERPRETATIONS: The reduced magnitude, persistence and neutralization capacity of SARS-CoV-2 specific Abs after vaccination in anti-TNF-α-treated IBD patients were associated with impaired formation and maintenance of S-specific B memory cells, likely due to absent cTfh1 activation leading to extra-follicular immune responses and diminished B memory cell diversification. These observations have implications for patient-tailored vaccination schedules/vaccines in anti-TNF-α-treated patients, irrespective of their underlying disease. FUNDING: The study was funded by third party funding of the Institute of Specific Prophylaxis and Tropical Medicine at the Medical University Vienna. The funders had no role in study design, data collection, data analyses, interpretation, or writing of report.

3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446069

RESUMO

CD19 is an essential protein in personalized CD19-targeting chimeric antigen receptor (CAR)-T cell-based cancer immunotherapies and CAR-T cell functionality evaluation. However, the recombinant expression of this "difficult to-express" (DTE) protein is challenging, and therefore, commercial access to the protein is limited. We have previously described the successful stable expression of our soluble CD19-AD2 fusion protein of the CD19 extracellular part fused with human serum albumin domain 2 (AD2) in CHO-K1 cells. The function, stability, and secretion rate of DTE proteins can be improved by culture conditions, such as reduced temperature and a shorter residence time. Moreover, glycosylation, as one of the most important post-translational modifications, represents a critical quality attribute potentially affecting CAR-T cell effector function and thus impacting therapy's success. In this study, we increased the production rate of CD19-AD2 by 3.5-fold through applying hypothermic culture conditions. We efficiently improved the purification of our his-tagged CD19-AD2 fusion protein via a Ni-NTA-based affinity column using a stepwise increase in the imidazole concentration. The binding affinity to commercially available anti-CD19 antibodies was evaluated via Bio-Layer Interferometry (BLI). Furthermore, we revealed glycosylation patterns via Electrospray Ionization Mass Spectrometry (ESI-MS), and five highly sialylated and multi-antennary N-glycosylation sites were identified. In summary, we optimized the CD19-AD2 production and purification process and were the first to characterize five highly complex N-glycosylation sites.


Assuntos
Neoplasias , Linfócitos T , Cricetinae , Animais , Humanos , Glicosilação , Cricetulus , Proteínas Recombinantes/genética , Imunoterapia Adotiva/métodos
4.
Front Med (Lausanne) ; 9: 822316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242786

RESUMO

In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.

5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34702738

RESUMO

Here, we expressed two neutralizing monoclonal antibodies (Abs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; H4 and B38) in three formats: IgG1, IgA1 monomers (m), and IgA1 dimers (d) in glycoengineered Nicotiana benthamiana plants. All six Ab variants assembled properly and exhibited a largely homogeneous glycosylation profile. Despite modest variation in antigen binding between Ab formats, SARS-CoV-2 neutralization (NT) potency significantly increased in the following manner: IgG1 < IgA1-m < IgA1-d, with an up to 240-fold NT increase of dimers compared to corresponding monomers. Our results underscore that both IgA's structural features and multivalency positively impact NT potency. In addition, they emphasize the versatile use of plants for the rapid expression of complex human proteins.


Assuntos
Anticorpos Monoclonais/química , COVID-19/virologia , Imunoglobulina A/química , Imunoglobulina G/química , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
6.
Proc Natl Acad Sci U S A ; 118(42)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599091

RESUMO

Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/biossíntese , Glicosilação , Humanos , Testes de Neutralização , Proteínas Recombinantes/biossíntese
7.
Front Bioeng Biotechnol ; 9: 779359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976974

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ß-coronavirus, is the causative agent of the COVID-19 pandemic. One of the three membrane-bound envelope proteins is the spike protein (S), the one responsible for docking to the cellular surface protein ACE2 enabling infection with SARS-CoV-2. Although the structure of the S-protein has distinct similarities to other viral envelope proteins, robust and straightforward protocols for recombinant expression and purification are not described in the literature. Therefore, most studies are done with truncated versions of the protein, like the receptor-binding domain. To learn more about the interaction of the virus with the ACE2 and other cell surface proteins, it is mandatory to provide recombinant spike protein in high structural quality and adequate quantity. Additional mutant variants will give new insights on virus assembly, infection mechanism, and therapeutic drug development. Here, we describe the development of a recombinant CHO cell line stably expressing the extracellular domain of a trimeric variant of the SARS CoV-2 spike protein and discuss significant parameters to be considered during the expression and purification process.

8.
Artigo em Inglês | MEDLINE | ID: mdl-32117929

RESUMO

The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.

9.
Biotechnol Prog ; 36(2): e2933, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680446

RESUMO

Perfusion cultivation of recombinant CHO cells is of substantial interest to the biopharmaceutical industry. This is due to increased space-time-yields (STYs) and a short residence time of the recombinant protein in the bioreactor. Economic processes rely on cultivation media supporting rapid growth in the exponential phase and high protein production in the stationary phase at minimal media consumption rates. To develop clone-specific, high-performing perfusion media we present a straightforward and rapid two-step approach combining commercially available basal media and feed supplements using design-of-experiment. First, the best performing feed supplements are selected in batch cultures. Then, the mixing ratio of selected feed supplements is optimized in small-scale semicontinuous perfusion cultures. The final media formulation is supported by statistical response surface modeling of a set of cultivation experiments with blended media formulations. Two best performing novel media blends were finally applied to perfusion bioreactor verification runs to reach 200 × 106 c/ml within 2 weeks at minimum cell-specific perfusion rates as low as 10-30 pL/c/d. Obtained STYs of 0.4-1.2 g/L/d represent a 10-fold increase compared to batch cultures. This general workflow is universally applicable to any perfusion platform combining a specific cell line, basal medium, and established feed solutions.


Assuntos
Meios de Cultura/farmacologia , Perfusão , Animais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Células CHO , Células Cultivadas , Cricetulus , Meios de Cultura/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/efeitos dos fármacos , Análise de Regressão
10.
Methods Mol Biol ; 2095: 27-39, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31858461

RESUMO

Perfusion is considered as the preferable unit operation mode for fully integrated continuous bioprocessing. However, the inherent complex process control, long process development times, and lack of suitable scale-down models for high-throughput screening are reasons why perfusion processes are still not routinely applied in cell culture technology. Advantages of perfusion are maintenance of a consistent cellular environment, a constant high-quality product flow, enhanced volumetric bioreactor productivity, and small lab footprint. Here, we provide guidelines for screening different proprietary but commercially available HyClone™ Cell Boost™ supplements in a Design of Experiment (DoE) approach to spike the HyClone™ CDM4NS0 basal media for enhanced product titers in small-scale TubeSpin models. These surrogate semi-perfusion cultures were successfully realized by a daily complete media exchange routine resulting in high viable cell densities for extended time periods at minimal media consumption. This technique was leveraged to define the potential of different perfusion media formulations.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Perfusão/métodos , Animais , Reatores Biológicos , Células CHO , Contagem de Células , Cricetulus , Análise de Regressão , Software
11.
Appl Microbiol Biotechnol ; 103(18): 7505-7518, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31350616

RESUMO

The production potential of recombinant monoclonal antibody (mAb) expressing cell lines depends, among other factors, on the intrinsic antibody structure determined by the amino acid sequence. In this study, we investigated the influence of somatic mutations in the V(D)J sequence of four individual, mature model mAbs on the expression potential. Therefore, we defined four couples, each consisting of one naturally occurring mAb (2G12, Ustekinumab, 4B3, and 2F5) and the corresponding germline-derived cognate mAb (353/11, 554/12, 136/63, and 236/14). For all eight mAb variants, recombinant Chinese hamster ovary (CHO) cell lines were developed with mAbs expressed from a defined chromosomal locus. The presented workflow investigates critical parameters including productivity, intra- and extracellular product profile, XBP1 splicing, thermal stability, and in silico hydrophobicity. Significant differences in productivity were even observed between the germline-derived mAbs which did not undergo somatic mutagenesis. Accordingly, back-to-germline mutations of mature mAbs are not necessarily reflecting improved expression and stability but indicate opportunities and limits of mAb engineering. From our studies, we conclude that germinalization represents a potential to improve mAb properties depending on the antibody's germline family, highlighting the fact that mAbs should be treated individually.


Assuntos
Anticorpos Monoclonais/genética , Mutação em Linhagem Germinativa , Proteínas Recombinantes/genética , Temperatura , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Cricetinae , Cricetulus , Mutação , Estabilidade Proteica , Proteínas Recombinantes/imunologia
12.
Biotechnol J ; 14(3): e1700686, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29701329

RESUMO

Chinese hamster ovary (CHO) cells comprise a variety of lineages including CHO-DXB11, CHO-K1, CHO-DG44, and CHO-S. Despite all CHO cell lines sharing a common ancestor, extensive mutagenesis, and clonal selection has resulted in substantial genetic heterogeneity among them. Data from sequencing show that different genes are missing in individual CHO cell lines and each cell line harbors a unique set of mutations with relevance to the bioprocess. However, not much literature is available about the influence of genetic differences of CHO on the performance of bioprocess operations. In this study, the host cell-specific differences among three widely used CHO cell lines (CHO-K1, CHO-S, and CHO-DG44) and recombinantly expressed the same monoclonal antibody (mAb) in an isogenic format by using bacterial artificial chromosomes (BACs) as transfer vector in all cell lines is examined. Cell-specific growth and product formation are studied in batch, fed-batch, and semi-continuous perfusion cultures. Further, two different cell culture media are used to investigate their effects. The authors find CHO cell line-specific preferences for mAb production or biomass synthesis that are determined by the host cell line. Additionally, quality attributes of the expressed mAb are influenced by the host cell line and media.


Assuntos
Anticorpos Monoclonais/genética , Técnicas de Cultura de Células/métodos , Animais , Biomassa , Células CHO , Linhagem Celular , Cromossomos Artificiais Bacterianos/genética , Cricetulus
13.
Hum Antibodies ; 27(1): 37-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30103312

RESUMO

Nomenclature of monoclonal antibodies traditionally followed a strict scheme indicating target and species information. Because of the rapid advances in this field, emphasized by approval of four humanized and six human antibodies in 2017, the International Nonproprietary Name of new antibodies was updated profoundly by removing the species substem completely. In this review we give an overview about what developments led to the preference of the scientific community towards human-like antibodies. We summarize the major updates in naming schemes that tried to classify antibodies according to their humanization technique or to the final primary sequence and how this led to the erroneous perception to indicate expected immunogenicity. Following the new 2017 nomenclature update, there will not be any information available about the species origin in the names of new antibodies, which emphasizes the need for providing additional supplemental information to the scientific community and develop tools to accurately estimate and control the safety of new monoclonal antibody molecules.


Assuntos
Anticorpos Monoclonais Humanizados/classificação , Terminologia como Assunto , Regiões Determinantes de Complementaridade/imunologia , Humanos , Engenharia de Proteínas
14.
Bioconjug Chem ; 30(1): 70-82, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30525492

RESUMO

Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the ß-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.


Assuntos
Adipatos/química , Epitopos/química , Glicoconjugados/química , Anticorpos Anti-HIV/imunologia , Manose/química , Tioureia/química , Amidas/química , Sequência de Carboidratos , Química Click , Dendrímeros/química , Glicoconjugados/síntese química , Anticorpos Anti-HIV/química
15.
PLoS One ; 12(5): e0178220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542462

RESUMO

Sensing of pathogens by innate immune cells is essential for the initiation of appropriate immune responses. Toll-like receptors (TLRs), which are highly sensitive for various structurally and evolutionary conserved molecules derived from microbes have a prominent role in this process. TLR engagement results in the activation of the transcription factor NF-κB, which induces the expression of cytokines and other inflammatory mediators. The exquisite sensitivity of TLR signalling can be exploited for the detection of bacteria and microbial contaminants in tissue cultures and in protein preparations. Here we describe a cellular reporter system for the detection of TLR ligands in biological samples. The well-characterized human monocytic THP-1 cell line was chosen as host for an NF-ᴋB-inducible enhanced green fluorescent protein reporter gene. We studied the sensitivity of the resultant reporter cells for a variety of microbial components and observed a strong reactivity towards TLR1/2 and TLR2/6 ligands. Mycoplasma lipoproteins are potent TLR2/6 agonists and we demonstrate that our reporter cells can be used as reliable and robust detection system for mycoplasma contaminations in cell cultures. In addition, a TLR4-sensitive subline of our reporters was engineered, and probed with recombinant proteins expressed in different host systems. Bacterially expressed but not mammalian expressed proteins induced strong reporter activity. We also tested proteins expressed in an E. coli strain engineered to lack TLR4 agonists. Such preparations also induced reporter activation in THP-1 cells highlighting the importance of testing recombinant protein preparations for microbial contaminations beyond endotoxins. Our results demonstrate the usefulness of monocytic reporter cells for high-throughput screening for microbial contaminations in diverse biological samples, including tissue culture supernatants and recombinant protein preparations. Fluorescent reporter assays can be measured on standard flow cytometers and in contrast to established detection methods, like luciferase-based systems or Limulus Amebocyte Lysate tests, they do not require costly reagents.


Assuntos
Fenômenos Microbiológicos , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo , Linhagem Celular , Meios de Cultura , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Ligantes , Monócitos/imunologia , Monócitos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor 4 Toll-Like/agonistas , Receptores Toll-Like/agonistas
16.
Methods Mol Biol ; 1603: 57-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28493123

RESUMO

Single-chain fragment variable-fragment crystallizable antibody constructs (scFv-Fc) are homodimeric proteins representing valuable alternatives to heterotetrameric full-length IgG molecules to study protein properties and product-dependent cellular behavior. In contrast to naturally occurring antibodies, these artificial molecules are assembled from functional antibody domains to reduce molecule complexity and enhance antibody expression levels. The scFv-Fc format retains critical antibody functions such as antigen binding affinity and antibody effector functions. Here, we present a protocol to convert the full-length anti-HIV-1 IgG1 antibody 2F5 into a scFv-Fc construct. Variable and constant regions are amplified by conventional PCR reactions and assembled by a single overlap-extension PCR reaction. The amplified product is then cloned into a mammalian expression vector suitable for high-titer transient gene expression. This workflow can be applied to any antibody sequence by adapting the specific primer sequences to the antibody of choice.


Assuntos
Regulação da Expressão Gênica , Anticorpos Anti-HIV/metabolismo , HIV-1/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Reação em Cadeia da Polimerase/métodos , Anticorpos de Cadeia Única/metabolismo , Afinidade de Anticorpos , Clonagem Molecular , Células HEK293 , Anticorpos Anti-HIV/genética , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Anticorpos de Cadeia Única/genética , Transfecção/métodos
17.
Biotechnol Bioeng ; 113(9): 1902-12, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26913574

RESUMO

Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the production of biopharmaceuticals. To overcome unfavorable features of CHO cells, a lot of effort is put into cell engineering to improve phenotype. "Omics" studies investigating elevated growth rate and specific productivities as well as extracellular stimulus have already revealed many interesting engineering targets. However, it remains largely unknown how physicochemical properties of the recombinant product itself influence the host cell. In this study, we used quantitative label-free LC-MS proteomic analyses to investigate product-specific proteome differences in CHO cells producing two similar antibody fragments. We established recombinant CHO cells producing the two antibodies, 3D6 and 2F5, both as single-chain Fv-Fc homodimeric antibody fragments (scFv-Fc). We applied three different vector strategies for transgene delivery (i.e., plasmid, bacterial artificial chromosome, recombinase-mediated cassette exchange), selected two best performing clones from transgene variants and transgene delivery methods and investigated three consecutively passaged cell samples by label-free proteomic analysis. LC-MS-MS profiles were compared in several sample combinations to gain insights into different aspects of proteomic changes caused by overexpression of two different heterologous proteins. This study suggests that not only the levels of specific product secretion but the product itself has a large impact on the proteome of the cell. Biotechnol. Bioeng. 2016;113: 1902-1912. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Proteoma/fisiologia , Proteômica/métodos , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/metabolismo , Animais , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Técnicas de Transferência de Genes , Modelos Moleculares , Estabilidade Proteica , Proteoma/análise , Proteoma/metabolismo , Proteínas Recombinantes/análise , Anticorpos de Cadeia Única/análise
18.
J Mol Recognit ; 29(6): 266-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26748949

RESUMO

Monoclonal antibodies represent the fastest growing class of biotherapeutic proteins. However, as they are often initially derived from rodent organisms, there is a severe risk of immunogenic reactions, hampering their applicability. The humanization of these antibodies remains a challenging task in the context of rational drug design. "Superhumanization" describes the direct transfer of the complementarity determining regions to a human germline framework, but this humanization approach often results in loss of binding affinity. In this study, we present a new approach for predicting promising backmutation sites using molecular dynamics simulations of the model antibody Ab2/3H6. The simulation method was developed in close conjunction with novel specificity experiments. Binding properties of mAb variants were evaluated directly from crude supernatants and confirmed using established binding affinity assays for purified antibodies. Our approach provides access to the dynamical features of the actual binding sites of an antibody, based solely on the antibody sequence. Thus we do not need structural data on the antibody-antigen complex and circumvent cumbersome methods to assess binding affinities. © 2016 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.


Assuntos
Anticorpos Monoclonais Humanizados/química , Regiões Determinantes de Complementaridade/genética , Mutação , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Sítios de Ligação , Células CHO , Regiões Determinantes de Complementaridade/química , Simulação por Computador , Cricetulus , Desenho de Fármacos , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular
19.
Appl Microbiol Biotechnol ; 98(23): 9723-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25158835

RESUMO

Over the years, Chinese hamster ovary (CHO) cells have emerged as the major host for expressing biotherapeutic proteins. Traditional methods to generate high-producer cell lines rely on random integration(s) of the gene of interest but have thereby left the identification of bottlenecks as a challenging task. For comparison of different producer cell lines derived from various transfections, a system that provides control over transgene expression behavior is highly needed. This motivated us to develop a novel "DUKX-B11 F3/F" cell line to target different single-chain antibody fragments into the same chromosomal target site by recombinase-mediated cassette exchange (RMCE) using the flippase (FLP)/FLP recognition target (FRT) system. The RMCE-competent cell line contains a gfp reporter fused to a positive/negative selection system flanked by heterospecific FRT (F) variants under control of an external CMV promoter, constructed as "promoter trap". The expression stability and FLP accessibility of the tagged locus was demonstrated by successive rounds of RMCE. As a proof of concept, we performed RMCE using cassettes encoding two different anti-HIV single-chain Fc fragments, 3D6scFv-Fc and 2F5scFv-Fc. Both targeted integrations yielded homogenous cell populations with comparable intracellular product contents and messenger RNA (mRNA) levels but product related differences in specific productivities. These studies confirm the potential of the newly available "DUKX-B11 F3/F" cell line to guide different transgenes into identical transcriptional control regions by RMCE and thereby generate clones with comparable amounts of transgene mRNA. This new host is a prerequisite for cell biology studies of independent transfections and transgenes.


Assuntos
Perfilação da Expressão Gênica , Anticorpos de Cadeia Única/biossíntese , Animais , Células CHO , Cricetulus , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA