Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Commun ; 13(1): 4940, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042217

RESUMO

Type 1 diabetes (T1D) is associated with lower scores on tests of cognitive and neuropsychological function and alterations in brain structure and function in children. This proof-of-concept pilot study (ClinicalTrials.gov Identifier NCT03428932) examined whether MRI-derived indices of brain development and function and standardized IQ scores in adolescents with T1D could be improved with better diabetes control using a hybrid closed-loop insulin delivery system. Eligibility criteria for participation in the study included age between 14 and 17 years and a diagnosis of T1D before 8 years of age. Randomization to either a hybrid closed-loop or standard diabetes care group was performed after pre-qualification, consent, enrollment, and collection of medical background information. Of 46 participants assessed for eligibility, 44 met criteria and were randomized. Two randomized participants failed to complete baseline assessments and were excluded from final analyses. Participant data were collected across five academic medical centers in the United States. Research staff scoring the cognitive assessments as well as those processing imaging data were blinded to group status though participants and their families were not. Forty-two adolescents, 21 per group, underwent cognitive assessment and multi-modal brain imaging before and after the six month study duration. HbA1c and sensor glucose downloads were obtained quarterly. Primary outcomes included metrics of gray matter (total and regional volumes, cortical surface area and thickness), white matter volume, and fractional anisotropy. Estimated power to detect the predicted treatment effect was 0.83 with two-tailed, α = 0.05. Adolescents in the hybrid closed-loop group showed significantly greater improvement in several primary outcomes indicative of neurotypical development during adolescence compared to the standard care group including cortical surface area, regional gray volumes, and fractional anisotropy. The two groups were not significantly different on total gray and white matter volumes or cortical thickness. The hybrid closed loop group also showed higher Perceptual Reasoning Index IQ scores and functional brain activity more indicative of neurotypical development relative to the standard care group (both secondary outcomes). No adverse effects associated with study participation were observed. These results suggest that alterations to the developing brain in T1D might be preventable or reversible with rigorous glucose control. Long term research in this area is needed.


Assuntos
Diabetes Mellitus Tipo 1 , Adolescente , Glicemia , Criança , Cognição , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Projetos Piloto
2.
Diabetes Care ; 44(4): 983-992, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33568403

RESUMO

OBJECTIVE: To assess whether previously observed brain and cognitive differences between children with type 1 diabetes and control subjects without diabetes persist, worsen, or improve as children grow into puberty and whether differences are associated with hyperglycemia. RESEARCH DESIGN AND METHODS: One hundred forty-four children with type 1 diabetes and 72 age-matched control subjects without diabetes (mean ± SD age at baseline 7.0 ± 1.7 years, 46% female) had unsedated MRI and cognitive testing up to four times over 6.4 ± 0.4 (range 5.3-7.8) years; HbA1c and continuous glucose monitoring were done quarterly. FreeSurfer-derived brain volumes and cognitive metrics assessed longitudinally were compared between groups using mixed-effects models at 6, 8, 10, and 12 years. Correlations with glycemia were performed. RESULTS: Total brain, gray, and white matter volumes and full-scale and verbal intelligence quotients (IQs) were lower in the diabetes group at 6, 8, 10, and 12 years, with estimated group differences in full-scale IQ of -4.15, -3.81, -3.46, and -3.11, respectively (P < 0.05), and total brain volume differences of -15,410, -21,159, -25,548, and -28,577 mm3 at 6, 8, 10, and 12 years, respectively (P < 0.05). Differences at baseline persisted or increased over time, and brain volumes and cognitive scores negatively correlated with a life-long HbA1c index and higher sensor glucose in diabetes. CONCLUSIONS: Detectable changes in brain volumes and cognitive scores persist over time in children with early-onset type 1 diabetes followed longitudinally; these differences are associated with metrics of hyperglycemia. Whether these changes can be reversed with scrupulous diabetes control requires further study. These longitudinal data support the hypothesis that the brain is a target of diabetes complications in young children.


Assuntos
Diabetes Mellitus Tipo 1 , Glicemia , Automonitorização da Glicemia , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/complicações , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
3.
Diabetes ; 69(8): 1770-1778, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471809

RESUMO

Glucose is a primary fuel source to the brain, yet the influence of dysglycemia on neurodevelopment in children with type 1 diabetes remains unclear. We examined brain activation using functional MRI in 80 children with type 1 diabetes (mean ± SD age 11.5 ± 1.8 years; 46% female) and 47 children without diabetes (control group) (age 11.8 ± 1.5 years; 51% female) as they performed a visuospatial working memory (N-back) task. Results indicated that in both groups, activation scaled positively with increasing working memory load across many areas, including the frontoparietal cortex, caudate, and cerebellum. Between groups, children with diabetes exhibited reduced performance on the N-back task relative to children in the control group, as well as greater modulation of activation (i.e., showed greater increase in activation with higher working memory load). Post hoc analyses indicated that greater modulation was associated in the diabetes group with better working memory function and with an earlier age of diagnosis. These findings suggest that increased modulation may occur as a compensatory mechanism, helping in part to preserve working memory ability, and further, that children with an earlier onset require additional compensation. Future studies that test whether these patterns change as a function of improved glycemic control are warranted.


Assuntos
Encéfalo/fisiopatologia , Cognição/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Criança , Feminino , Humanos , Masculino
4.
Pediatr Diabetes ; 21(3): 515-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003523

RESUMO

When considered as a group, children with type 1 diabetes have subtle cognitive deficits relative to neurotypical controls. However, the neural correlates of these differences remain poorly understood. Using functional near-infrared spectroscopy (fNIRS), we investigated the brain functional activations of young adolescents (19 individuals with type 1 diabetes, 18 healthy controls, ages 8-16 years) during a Go/No-Go response inhibition task. Both cohorts had the same performance on the task, but the individuals with type 1 diabetes subjects had higher activations in a frontal-parietal network including the bilateral supramarginal gyri and bilateral rostrolateral prefrontal cortices. The activations in these regions were positively correlated with fewer parent-reported conduct problems (ie, lower Conduct Problem scores) on the Behavioral Assessment System for Children, Second Edition. Lower Conduct Problem scores are characteristic of less rule-breaking behavior suggesting a link between this brain network and better self-control. These findings are consistent with a large functional magnetic resonance imaging (fMRI) study of children with type 1 diabetes using completely different participants. Perhaps surprisingly, the between-group activation results from fNIRS were statistically stronger than the results using fMRI. This pilot study is the first fNIRS investigation of executive function for individuals with type 1 diabetes. The results suggest that fNIRS is a promising functional neuroimaging resource for detecting the brain correlates of behavior in the pediatric clinic.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Neuroimagem Funcional/métodos , Lobo Parietal/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/psicologia , Função Executiva/fisiologia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Projetos Piloto , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
PLoS Med ; 16(12): e1002979, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815939

RESUMO

BACKGROUND: Optimal glycemic control is particularly difficult to achieve in children and adolescents with type 1 diabetes (T1D), yet the influence of dysglycemia on the developing brain remains poorly understood. METHODS AND FINDINGS: Using a large multi-site study framework, we investigated activation patterns using functional magnetic resonance imaging (fMRI) in 93 children with T1D (mean age 11.5 ± 1.8 years; 45.2% female) and 57 non-diabetic (control) children (mean age 11.8 ± 1.5 years; 50.9% female) as they performed an executive function paradigm, the go/no-go task. Children underwent scanning and cognitive and clinical assessment at 1 of 5 different sites. Group differences in activation occurring during the contrast of "no-go > go" were examined while controlling for age, sex, and scan site. Results indicated that, despite equivalent task performance between the 2 groups, children with T1D exhibited increased activation in executive control regions (e.g., dorsolateral prefrontal and supramarginal gyri; p = 0.010) and reduced suppression of activation in the posterior node of the default mode network (DMN; p = 0.006). Secondary analyses indicated associations between activation patterns and behavior and clinical disease course. Greater hyperactivation in executive control regions in the T1D group was correlated with improved task performance (as indexed by shorter response times to correct "go" trials; r = -0.36, 95% CI -0.53 to -0.16, p < 0.001) and with better parent-reported measures of executive functioning (r values < -0.29, 95% CIs -0.47 to -0.08, p-values < 0.007). Increased deficits in deactivation of the posterior DMN in the T1D group were correlated with an earlier age of T1D onset (r = -0.22, 95% CI -0.41 to -0.02, p = 0.033). Finally, exploratory analyses indicated that among children with T1D (but not control children), more severe impairments in deactivation of the DMN were associated with greater increases in hyperactivation of executive control regions (T1D: r = 0.284, 95% CI 0.08 to 0.46, p = 0.006; control: r = 0.108, 95% CI -0.16 to 0.36, p = 0.423). A limitation to this study involves glycemic effects on brain function; because blood glucose was not clamped prior to or during scanning, future studies are needed to assess the influence of acute versus chronic dysglycemia on our reported findings. In addition, the mechanisms underlying T1D-associated alterations in activation are unknown. CONCLUSIONS: These data indicate that increased recruitment of executive control areas in pediatric T1D may act to offset diabetes-related impairments in the DMN, ultimately facilitating cognitive and behavioral performance levels that are equivalent to that of non-diabetic controls. Future studies that examine whether these patterns change as a function of improved glycemic control are warranted.


Assuntos
Glicemia/metabolismo , Encéfalo/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Função Executiva/fisiologia , Adolescente , Criança , Diabetes Mellitus Tipo 1/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Testes Neuropsicológicos
6.
Diabetes Care ; 42(3): 443-449, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30573652

RESUMO

OBJECTIVE: This study examined whether a history of diabetic ketoacidosis (DKA) is associated with changes in longitudinal cognitive and brain development in young children with type 1 diabetes. RESEARCH DESIGN AND METHODS: Cognitive and brain imaging data were analyzed from 144 children with type 1 diabetes, ages 4 to <10 years, who participated in an observational study of the Diabetes Research in Children Network (DirecNet). Participants were grouped according to history of DKA severity (none/mild or moderate/severe). Each participant had unsedated MRI scans and cognitive testing at baseline and 18 months. RESULTS: In 48 of 51 subjects, the DKA event occurred at the time of onset, at an average of 2.9 years before study entry. The moderate/severe DKA group gained more total and regional white and gray matter volume over the observed 18 months compared with the none/mild group. When matched by age at time of enrollment and average HbA1c during the 18-month interval, participants who had a history of moderate/severe DKA compared with none/mild DKA were observed to have significantly lower Full Scale Intelligence Quotient scores and cognitive performance on the Detectability and Commission subtests of the Conners' Continuous Performance Test II and the Dot Locations subtest of the Children's Memory Scale. CONCLUSIONS: A single episode of moderate/severe DKA in young children at diagnosis is associated with lower cognitive scores and altered brain growth. Further studies are needed to assess whether earlier diagnosis of type 1 diabetes and prevention of DKA may reduce the long-term effect of ketoacidosis on the developing brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/psicologia , Cetoacidose Diabética/psicologia , Idade de Início , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Criança , Pré-Escolar , Cognição/fisiologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/epidemiologia , Transtornos Cognitivos/fisiopatologia , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Cetoacidose Diabética/diagnóstico , Cetoacidose Diabética/epidemiologia , Cetoacidose Diabética/fisiopatologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Índice de Gravidade de Doença
8.
Diabetologia ; 61(7): 1538-1547, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654376

RESUMO

AIMS/HYPOTHESIS: Prior studies suggest white matter growth is reduced and white matter microstructure is altered in the brains of young children with type 1 diabetes when compared with brains of non-diabetic children, due in part to adverse effects of hyperglycaemia. This longitudinal observational study examines whether dysglycaemia alters the developmental trajectory of white matter microstructure over time in young children with type 1 diabetes. METHODS: One hundred and eighteen children, aged 4 to <10 years old with type 1 diabetes and 58 age-matched, non-diabetic children were studied at baseline and 18 months, at five Diabetes Research in Children Network clinical centres. We analysed longitudinal trajectories of white matter using diffusion tensor imaging. Continuous glucose monitoring profiles and HbA1c levels were obtained every 3 months. RESULTS: Axial diffusivity was lower in children with diabetes at baseline (p = 0.022) and at 18 months (p = 0.015), indicating that differences in white matter microstructure persist over time in children with diabetes. Within the diabetes group, lower exposure to hyperglycaemia, averaged over the time since diagnosis, was associated with higher fractional anisotropy (p = 0.037). Fractional anisotropy was positively correlated with performance (p < 0.002) and full-scale IQ (p < 0.02). CONCLUSIONS/INTERPRETATION: These results suggest that hyperglycaemia is associated with altered white matter development, which may contribute to the mild cognitive deficits in this population.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/complicações , Leucoencefalopatias/etiologia , Fatores Etários , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Desenvolvimento Infantil , Pré-Escolar , Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Imagem de Tensor de Difusão , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/fisiopatologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Prognóstico , Fatores de Risco , Fatores de Tempo , Estados Unidos
9.
Pediatr Diabetes ; 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29675980

RESUMO

The extant literature finds that children with type 1 diabetes mellitus (T1D) experience mild cognitive alterations compared to healthy age-matched controls. The neural basis of these cognitive differences is unclear but may relate in part to the effects of dysglycemia on the developing brain. We investigated longitudinal changes in hippocampus volume in young children with early-onset T1D. Structural magnetic resonance imaging data were acquired from 142 children with T1D and 65 age-matched control subjects (4-10 years of age at study entry) at 2 time points, 18 months apart. The effects of diabetes and glycemic exposure on hippocampal volume and growth were examined. Results indicated that although longitudinal hippocampus growth did not differ between children with T1D and healthy control children, slower growth of the hippocampus was associated with both increased exposure to hyperglycemia (interval HbA1c) and greater glycemic variability (MAGE) in T1D. These observations indicate that the current practice of tolerating some hyperglycemia to minimize the risk of hypoglycemia in young children with T1D may not be optimal for the developing brain. Efforts that continue to assess the factors influencing neural and cognitive development in children with T1D will be critical in minimizing the deleterious effects of diabetes.

10.
Proc Natl Acad Sci U S A ; 114(40): 10767-10772, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923933

RESUMO

Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability. The cognitive, behavioral, and neurological phenotypes observed in affected individuals can vary considerably, making it difficult to predict outcomes and determine the need for interventions. We sought to examine early structural brain growth as a potential marker for identification of clinically meaningful subgroups. Participants included 42 very young boys with FXS who completed a T1-weighted anatomical MRI and cognitive/behavioral assessment at two longitudinal time points, with mean ages of 2.89 y and 4.91 y. Topological data analysis (TDA), an unsupervised approach to multivariate pattern analysis, was applied to the longitudinal anatomical data to identify coherent but heretofore unknown subgroups. TDA revealed two large subgroups within the study population based solely on longitudinal MRI data. Post hoc comparisons of cognition, adaptive functioning, and autism severity scores between these groups demonstrated that one group was consistently higher functioning on all measures at both time points, with pronounced and significant unidirectional differences (P < 0.05 for time point 1 and/or time point 2 for each measure). These results support the existence of two longitudinally defined, neuroanatomically distinct, and clinically relevant phenotypes among boys with FXS. If confirmed by additional analyses, such information may be used to predict outcomes and guide design of targeted therapies. Furthermore, TDA of longitudinal anatomical MRI data may represent a useful method for reliably and objectively defining subtypes within other neuropsychiatric disorders.


Assuntos
Encéfalo/patologia , Desenvolvimento Infantil , Cognição , Síndrome do Cromossomo X Frágil/patologia , Imageamento por Ressonância Magnética/métodos , Pré-Escolar , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Fenótipo
11.
Diabetes ; 66(3): 754-762, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27702833

RESUMO

Sustained dysregulation of blood glucose (hyper- or hypoglycemia) associated with type 1 diabetes (T1D) has been linked to cognitive deficits and altered brain anatomy and connectivity. However, a significant gap remains with respect to how T1D affects spontaneous at-rest connectivity in young developing brains. Here, using a large multisite study, resting-state functional MRI data were examined in young children with T1D (n = 57; mean age = 7.88 years; 27 females) as compared with age-matched control subjects without diabetes (n = 26; mean age = 7.43 years; 14 females). Using both model-driven seed-based analysis and model-free independent component analysis and controlling for age, data acquisition site, and sex, converging results were obtained, suggesting increased connectivity in young children with T1D as compared with control subjects without diabetes. Further, increased connectivity in children with T1D was observed to be positively associated with cognitive functioning. The observed positive association of connectivity with cognitive functioning in T1D, without overall group differences in cognitive function, suggests a putative compensatory role of hyperintrinsic connectivity in the brain in children with this condition. Altogether, our study attempts to fill a critical gap in knowledge regarding how dysglycemia in T1D might affect the brain's intrinsic connectivity at very young ages.


Assuntos
Encéfalo/fisiopatologia , Desenvolvimento Infantil , Cognição , Diabetes Mellitus Tipo 1/fisiopatologia , Hiperglicemia/fisiopatologia , Hipoglicemia/fisiopatologia , Glicemia/metabolismo , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/psicologia , Feminino , Neuroimagem Funcional , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/psicologia , Hipoglicemia/metabolismo , Hipoglicemia/psicologia , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos
12.
Hum Brain Mapp ; 37(11): 4034-4046, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27339089

RESUMO

Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem
13.
J Int Neuropsychol Soc ; 22(3): 293-302, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786245

RESUMO

OBJECTIVES: Decrements in cognitive function may already be evident in young children with type 1 diabetes (T1D). Here we report prospectively acquired cognitive results over 18 months in a large cohort of young children with and without T1D. METHODS: A total of 144 children with T1D (mean HbA1c: 7.9%) and 70 age-matched healthy controls (mean age both groups 8.5 years; median diabetes duration 3.9 years; mean age of onset 4.1 years) underwent neuropsychological testing at baseline and after 18-months of follow-up. We hypothesized that group differences observed at baseline would be more pronounced after 18 months, particularly in those T1D patients with greatest exposure to glycemic extremes. RESULTS: Cognitive domain scores did not differ between groups at the 18 month testing session and did not change differently between groups over the follow-up period. However, within the T1D group, a history of diabetic ketoacidosis (DKA) was correlated with lower Verbal IQ and greater hyperglycemia exposure (HbA1c area under the curve) was inversely correlated to executive functions test performance. In addition, those with a history of both types of exposure performed most poorly on measures of executive function. CONCLUSIONS: The subtle cognitive differences between T1D children and nondiabetic controls observed at baseline were not observed 18 months later. Within the T1D group, as at baseline, relationships between cognition (Verbal IQ and executive functions) and glycemic variables (chronic hyperglycemia and DKA history) were evident. Continued longitudinal study of this T1D cohort and their carefully matched healthy comparison group is planned.


Assuntos
Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Deficiências do Desenvolvimento/etiologia , Diabetes Mellitus Tipo 1/complicações , Testes Neuropsicológicos , Glicemia , Estudos de Casos e Controles , Criança , Deficiências do Desenvolvimento/diagnóstico , Cetoacidose Diabética/sangue , Função Executiva/fisiologia , Feminino , Humanos , Hiperglicemia/fisiopatologia , Estudos Longitudinais , Masculino , Estatísticas não Paramétricas , Comportamento Verbal/fisiologia
14.
Diabetes ; 65(2): 476-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26512024

RESUMO

Early-onset type 1 diabetes may affect the developing brain during a critical window of rapid brain maturation. Structural MRI was performed on 141 children with diabetes (4-10 years of age at study entry) and 69 age-matched control subjects at two time points spaced 18 months apart. For the children with diabetes, the mean (±SD) HbA1c level was 7.9 ± 0.9% (63 ± 9.8 mmol/mol) at both time points. Relative to control subjects, children with diabetes had significantly less growth of cortical gray matter volume and cortical surface area and significantly less growth of white matter volume throughout the cortex and cerebellum. For the population with diabetes, the change in the blood glucose level at the time of scan across longitudinal time points was negatively correlated with the change in gray and white matter volumes, suggesting that fluctuating glucose levels in children with diabetes may be associated with corresponding fluctuations in brain volume. In addition, measures of hyperglycemia and glycemic variation were significantly negatively correlated with the development of surface curvature. These results demonstrate that early-onset type 1 diabetes has widespread effects on the growth of gray and white matter in children whose blood glucose levels are well within the current treatment guidelines for the management of diabetes.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Fatores Etários , Glicemia/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Humanos , Hiperglicemia/complicações , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Tamanho do Órgão , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia
15.
Diabetes ; 64(5): 1770-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25488901

RESUMO

Significant regional differences in gray and white matter volume and subtle cognitive differences between young diabetic and nondiabetic children have been observed. Here, we assessed whether these differences change over time and the relation with dysglycemia. Children ages 4 to <10 years with (n = 144) and without (n = 72) type 1 diabetes (T1D) had high-resolution structural MRI and comprehensive neurocognitive tests at baseline and 18 months and continuous glucose monitoring and HbA1c performed quarterly for 18 months. There were no differences in cognitive and executive function scores between groups at 18 months. However, children with diabetes had slower total gray and white matter growth than control subjects. Gray matter regions (left precuneus, right temporal, frontal, and parietal lobes and right medial-frontal cortex) showed lesser growth in diabetes, as did white matter areas (splenium of the corpus callosum, bilateral superior-parietal lobe, bilateral anterior forceps, and inferior-frontal fasciculus). These changes were associated with higher cumulative hyperglycemia and glucose variability but not with hypoglycemia. Young children with T1D have significant differences in total and regional gray and white matter growth in brain regions involved in complex sensorimotor processing and cognition compared with age-matched control subjects over 18 months, suggesting that chronic hyperglycemia may be detrimental to the developing brain.


Assuntos
Envelhecimento , Diabetes Mellitus Tipo 1/patologia , Substância Cinzenta/anatomia & histologia , Hiperglicemia/patologia , Doenças do Sistema Nervoso/etiologia , Substância Branca/anatomia & histologia , Glicemia/fisiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Hiperglicemia/metabolismo , Testes de Inteligência , Masculino
16.
Am J Med Genet B Neuropsychiatr Genet ; 165B(6): 531-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044604

RESUMO

Turner syndrome (TS) arises from partial or complete absence of the X-chromosome in females. Girls with TS show deficits in visual-spatial skills as well as reduced brain volume and surface area in the parietal cortex which supports these cognitive functions. Thus, measuring the developmental trajectory of the parietal cortex and the associated visual-spatial cognition in TS may provide novel insights into critical brain-behavior associations. In this longitudinal study, we acquired structural MRI data and assessed visual-spatial skills in 16 (age: 8.23 ± 2.5) girls with TS and 13 age-matched controls over two time-points. Gray and white matter volume, surface area and cortical thickness were calculated from surfaced based segmentation of bilateral parietal cortices, and the NEPSY Arrows subtest was used to assess visual-spatial ability. Volumetric and cognitive scalars were modeled to obtain estimates of age-related change. The results show aberrant growth of white matter volume (P = 0.011, corrected) and surface area (P = 0.036, corrected) of the left superior parietal regions during childhood in girls with TS. Other parietal sub-regions were significantly smaller in girls with TS at both time-points but did not show different growth trajectories relative to controls. Furthermore, we found that visual-spatial skills showed a widening deficit for girls with TS relative to controls (P = 0.003). Young girls with TS demonstrate an aberrant trajectory of parietal cortical and cognitive development during childhood. Elucidating aberrant neurodevelopmental trajectories in this population is critical for determining specific stages of brain maturation that are particularly dependent on TS-related genetic and hormonal factors.


Assuntos
Cognição/fisiologia , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/patologia , Processamento Espacial/fisiologia , Síndrome de Turner/patologia , Síndrome de Turner/fisiopatologia , Criança , Demografia , Feminino , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Estudos Longitudinais , Substância Branca/patologia , Substância Branca/fisiopatologia
17.
Am J Psychiatry ; 171(10): 1099-106, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24969119

RESUMO

OBJECTIVE: The authors sought to investigate neural system habituation to face and eye gaze in fragile X syndrome, a disorder characterized by eye-gaze aversion, among other social and cognitive deficits. METHOD: Participants (ages 15-25 years) were 30 individuals with fragile X syndrome (females, N=14) and a comparison group of 25 individuals without fragile X syndrome (females, N=12) matched for general cognitive ability and autism symptoms. Functional MRI (fMRI) was used to assess brain activation during a gaze habituation task. Participants viewed repeated presentations of four unique faces with either direct or averted eye gaze and judged the direction of eye gaze. RESULTS: Four participants (males, N=4/4; fragile X syndrome, N=3) were excluded because of excessive head motion during fMRI scanning. Behavioral performance did not differ between the groups. Less neural habituation (and significant sensitization) in the fragile X syndrome group was found in the cingulate gyrus, fusiform gyrus, and frontal cortex in response to all faces (direct and averted gaze). Left fusiform habituation in female participants was directly correlated with higher, more typical levels of the fragile X mental retardation protein and inversely correlated with autism symptoms. There was no evidence for differential habituation to direct gaze compared with averted gaze within or between groups. CONCLUSIONS: Impaired habituation and accentuated sensitization in response to face/eye gaze was distributed across multiple levels of neural processing. These results could help inform interventions, such as desensitization therapy, which may help patients with fragile X syndrome modulate anxiety and arousal associated with eye gaze, thereby improving social functioning.


Assuntos
Movimentos Oculares/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/psicologia , Lobo Frontal/fisiopatologia , Giro do Cíngulo/fisiopatologia , Habituação Psicofisiológica/fisiologia , Lobo Temporal/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Expressão Facial , Feminino , Fixação Ocular/fisiologia , Proteína do X Frágil da Deficiência Intelectual/sangue , Síndrome do Cromossomo X Frágil/sangue , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Adulto Jovem
18.
Hum Brain Mapp ; 35(9): 4904-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24737721

RESUMO

Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is the most common known inherited cause of developmental disability as well as the most common single-gene risk factor for autism. Our goal was to examine variation in brain structure in FXS with topological data analysis (TDA), and to assess how such variation is associated with measures of IQ and autism-related behaviors. To this end, we analyzed imaging and behavioral data from young boys (n = 52; aged 1.57-4.15 years) diagnosed with FXS. Application of topological methods to structural MRI data revealed two large subgroups within the study population. Comparison of these subgroups showed significant between-subgroup neuroanatomical differences similar to those previously reported to distinguish children with FXS from typically developing controls (e.g., enlarged caudate). In addition to neuroanatomy, the groups showed significant differences in IQ and autism severity scores. These results suggest that despite arising from a single gene mutation, FXS may encompass two biologically, and clinically separable phenotypes. In addition, these findings underscore the potential of TDA as a powerful tool in the search for biological phenotypes of neuropsychiatric disorders.


Assuntos
Encéfalo/patologia , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/parasitologia , Fenótipo , Transtorno Autístico/diagnóstico , Transtorno Autístico/psicologia , Encéfalo/crescimento & desenvolvimento , Pré-Escolar , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Lactente , Inteligência , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Análise Multinível , Escalas de Graduação Psiquiátrica , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia
19.
Front Hum Neurosci ; 8: 155, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24678293

RESUMO

Reading and writing are related but separable processes that are crucial skills to possess in modern society. The neurobiological basis of reading acquisition and development, which critically depends on phonological processing, and to a lesser degree, beginning writing as it relates to letter perception, are increasingly being understood. Yet direct relationships between writing and reading development, in particular, with phonological processing is not well understood. The main goal of the current preliminary study was to examine individual differences in neurofunctional and neuroanatomical patterns associated with handwriting in beginning writers/readers. In 46 5-6 year-old beginning readers/writers, ratings of handwriting quality, were rank-ordered from best to worst and correlated with brain activation patterns during a phonological task using functional MRI, and with regional gray matter volume from structural T1 MRI. Results showed that better handwriting was associated negatively with activation and positively with gray matter volume in an overlapping region of the pars triangularis of right inferior frontal gyrus. This region, in particular in the left hemisphere in adults and more bilaterally in young children, is known to be important for decoding, phonological processing, and subvocal rehearsal. We interpret the dissociation in the directionality of the association in functional activation and morphometric properties in the right inferior frontal gyrus in terms of neural efficiency, and suggest future studies that interrogate the relationship between the neural mechanisms underlying reading and writing development.

20.
Pediatr Radiol ; 44(2): 181-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096802

RESUMO

BACKGROUND: The ability to lie still in an MRI scanner is essential for obtaining usable image data. To reduce motion, young children are often sedated, adding significant cost and risk. OBJECTIVE: We assessed the feasibility of using a simple and affordable behavioral desensitization program to yield high-quality brain MRI scans in sedation-free children. MATERIALS AND METHODS: 222 children (4-9.9 years), 147 with type 1 diabetes and 75 age-matched non-diabetic controls, participated in a multi-site study focused on effects of type 1 diabetes on the developing brain. T1-weighted and diffusion-weighted imaging (DWI) MRI scans were performed. All children underwent behavioral training and practice MRI sessions using either a commercial MRI simulator or an inexpensive mock scanner consisting of a toy tunnel, vibrating mat, and video player to simulate the sounds and feel of the MRI scanner. RESULTS: 205 children (92.3%), mean age 7 ± 1.7 years had high-quality T1-W scans and 174 (78.4%) had high-quality diffusion-weighted scans after the first scan session. With a second scan session, success rates were 100% and 92.5% for T1-and diffusion-weighted scans, respectively. Success rates did not differ between children with type 1 diabetes and children without diabetes, or between centers using a commercial MRI scan simulator and those using the inexpensive mock scanner. CONCLUSION: Behavioral training can lead to a high success rate for obtaining high-quality T1-and diffusion-weighted brain images from a young population without sedation.


Assuntos
Artefatos , Encéfalo/patologia , Dessensibilização Psicológica/métodos , Diabetes Mellitus Tipo 1/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/psicologia , Aumento da Imagem/métodos , Adolescente , Criança , Pré-Escolar , Sedação Consciente , Estudos de Viabilidade , Feminino , Humanos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA