Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Cell Dev Biol ; 10: 820255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652095

RESUMO

Characterization of pluripotent states, in which cells can both self-renew or differentiate, with the irreversible loss of pluripotency, are important research areas in developmental biology. Although microRNAs (miRNAs) have been shown to play a relevant role in cellular differentiation, the role of miRNAs integrated into gene regulatory networks and its dynamic changes during these early stages of embryonic stem cell (ESC) differentiation remain elusive. Here we describe the dynamic transcriptional regulatory circuitry of stem cells that incorporate protein-coding and miRNA genes based on miRNA array expression and quantitative sequencing of short transcripts upon the downregulation of the Estrogen Related Receptor Beta (Esrrb). The data reveals how Esrrb, a key stem cell transcription factor, regulates a specific stem cell miRNA expression program and integrates dynamic changes of feed-forward loops contributing to the early stages of cell differentiation upon its downregulation. Together these findings provide new insights on the architecture of the combined transcriptional post-transcriptional regulatory network in embryonic stem cells.

2.
Hypertension ; 79(7): 1515-1524, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545947

RESUMO

BACKGROUND: The ability to diagnose preeclampsia clinically is suboptimal. Our objective was to validate a novel multianalyte assay and characterize its performance, when intended for use as an aid to rule-out preeclampsia. METHODS: Prospective, multicenter cohort study of pregnant individuals presenting between 280/7 and 366/7 weeks' with preeclampsia-associated signs and symptoms. Individuals not diagnosed with preeclampsia after baseline evaluation were enrolled in the study cohort, with those who later developed preeclampsia, classified as cases and compared with a negative control group who did not develop preeclampsia. Individuals with assay values at time of enrollment ≥0.0325, determined using a previously developed algorithm, considered at risk. The primary analysis was the time to develop preeclampsia assessed using a multivariate Cox regression model. RESULTS: One thousand thirty-six pregnant individuals were enrolled in the study cohort with an incidence of preeclampsia of 30.3% (27.6%-33.2%). The time to develop preeclampsia was shorter for those with an at-risk compared with negative assay result (log-rank P<0.0001; adjusted hazard ratio of 4.81 [3.69-6.27, P<0.0001]). The performance metrics for the assay to rule-out preeclampsia within 7 days of enrollment showed a sensitivity 76.4% (67.5%-83.5%), negative predictive value 95.0% (92.8%-96.6%), and negative likelihood ratio 0.46 (0.32-0.65). Assay performance improved if delivery occurred <37 weeks and for individuals enrolled between 28 and 35 weeks. CONCLUSIONS: We confirmed that a novel multianalyte assay was associated with the time to develop preeclampsia and has a moderate sensitivity and negative likelihood ratio but high negative predictive value when assessed as an aid to rule out preeclampsia within 7 days of enrollment. REGISTRATION: The study was registered on Clinicaltrials.gov (Identifier NCT02780414).


Assuntos
Pré-Eclâmpsia , Biomarcadores , Estudos de Coortes , Feminino , Humanos , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/epidemiologia , Valor Preditivo dos Testes , Gravidez , Estudos Prospectivos
3.
J Pharm Biomed Anal ; 214: 114729, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35344790

RESUMO

Preeclampsia is a serious condition responsible for much pregnancy-related morbidity and mortality. Diagnosis of preeclampsia is difficult due to the non-specific and subjective nature of symptoms of the disease. To reduce the subjective decision making and management of preeclampsia, we identified a panel of biomarkers representing multiple and different pathogenic pathways implicated in the etiology of preeclampsia, and developed a test referred to as Preecludia™. An algorithm based on eight biomarkers (cluster of differentiation 274 (CD274), decorin, endoglin, fibroblast growth factor-21 (FGF21), soluble fms-related tyrosine kinase 1 (sFlt-1), kidney injury molecule-1 (KIM-1), free placental growth factor (PlGF), and total PlGF) and gestational age at the time of sample collection was constructed to rule out preeclampsia in women presenting with signs and symptoms of preeclampsia. The analytical performance of each of the individual biomarker assays that comprise the Preecludia™ test was evaluated. Herein we report the test's precision, analytical range, analytical sensitivity, parallelism, linearity, interference, analytical specificity, analytical accuracy, and stability. The data indicate that these biomarker assays exhibit a high level of inter-run precision of less than 15%, with minimal interference.


Assuntos
Pré-Eclâmpsia , Biomarcadores , Endoglina , Feminino , Humanos , Fator de Crescimento Placentário , Pré-Eclâmpsia/diagnóstico , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular
4.
Mol Cancer Ther ; 20(11): 2274-2279, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34465593

RESUMO

When tissue biopsy is not medically prudent or tissue is insufficient for molecular testing, alternative methods are needed. Because cell-free DNA (cfDNA) has been shown to provide a representative surrogate for tumor tissue, we sought to evaluate its utility in this clinical scenario. cfDNA was isolated from the plasma of patients and assayed with low-coverage (∼0.3×), genome-wide sequencing. Copy-number alterations (CNA) were identified and characterized using analytic methods originally developed for noninvasive prenatal testing (NIPT) and quantified using the genomic instability number (GIN), a metric that reflects the quantity and magnitude of CNAs across the genome. The technical variability of the GIN was first evaluated in an independent cohort comprising genome-wide sequencing results from 27,754 women who consented to have their samples used for research and whose NIPT results yielded no detected CNAs to establish a detection threshold. Subsequently, cfDNA sequencing data from 96 patients with known cancers but for whom a tissue biopsy could not be obtained are presented. An elevated GIN was detected in 35% of patients and detection rates varied by tumor origin. Collectively, CNAs covered 96.6% of all autosomes. Survival was significantly reduced in patients with an elevated GIN relative to those without. Overall, these data provide a proof of concept for the use of low-coverage, genome-wide sequencing of cfDNA from patients with cancer to obtain relevant molecular information in instances where tissue is difficult to access. These data may ultimately serve as an informative complement to other molecular tests.


Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Variações do Número de Cópias de DNA/genética , Neoplasias/genética , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Adulto Jovem
6.
Front Cell Dev Biol ; 9: 630067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816475

RESUMO

Cell fate decisions during development are governed by multi-factorial regulatory mechanisms including chromatin remodeling, DNA methylation, binding of transcription factors to specific loci, RNA transcription and protein synthesis. However, the mechanisms by which such regulatory "dimensions" coordinate cell fate decisions are currently poorly understood. Here we quantified the multi-dimensional molecular changes that occur in mouse embryonic stem cells (mESCs) upon depletion of Estrogen related receptor beta (Esrrb), a key pluripotency regulator. Comparative analyses of expression changes subsequent to depletion of Esrrb or Nanog, indicated that a system of interlocked feed-forward loops involving both factors, plays a central part in regulating the timing of mESC fate decisions. Taken together, our meta-analyses support a hierarchical model in which pluripotency is maintained by an Oct4-Sox2 regulatory module, while the timing of differentiation is regulated by a Nanog-Esrrb module.

7.
Mol Cancer Ther ; 18(2): 448-458, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523049

RESUMO

Inhibitors of the PD-1/PD-L1/CTLA-4 immune checkpoint pathway have revolutionized cancer treatment. Indeed, some patients with advanced, refractory malignancies achieve durable responses; however, only a subset of patients benefit, necessitating new biomarkers to predict outcome. Interrogating cell-free DNA (cfDNA) isolated from plasma (liquid biopsy) provides a promising method for monitoring response. We describe the use of low-coverage, genome-wide sequencing of cfDNA, validated extensively for noninvasive prenatal testing, to detect tumor-specific copy-number alterations, and the development of a new metric-the genome instability number (GIN)-to monitor response to these drugs. We demonstrate how the GIN can be used to discriminate clinical response from progression, differentiate progression from pseudoprogression, and identify hyperprogressive disease. Finally, we provide evidence for delayed kinetics in responses to checkpoint inhibitors relative to molecularly targeted therapies. Overall, these data demonstrate a proof of concept for using this method for monitoring treatment outcome in patients with cancer receiving immunotherapy.


Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Sequenciamento Completo do Genoma/métodos , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Estudos Prospectivos , Análise de Sobrevida , Resultado do Tratamento
8.
Genet Med ; 19(12): 1332-1337, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28617416

RESUMO

PurposeInvasive diagnostic prenatal testing can provide the most comprehensive information about the genetic status of a fetus. Noninvasive prenatal screening methods, especially when using cell-free DNA (cfDNA), are often limited to reporting only on trisomies 21, 18, and 13 and sex chromosome aneuploidies. This can leave a significant number of chromosomal and subchromosomal copy-number variations undetected. In 2015, we launched a new genome-wide cfDNA screening test that has the potential to narrow this detection gap.MethodsHere, we review the results from the first 10,000 cases submitted to the Sequenom clinical laboratory for genome-wide cfDNA screening.ResultsThe high-risk indication for this cohort differed compared with standard cfDNA screening. More samples were submitted with ultrasound indications (25% compared with 13% for standard cfDNA screening) and fewer for advanced maternal age (51% for genome-wide screening versus 68% for standard cfDNA screening). A total of 554 positive calls were made, of which 164 were detectable only via genome-wide analysis.ConclusionThis reports indicates a difference in utilization compared with standard cfDNA screening, where positivity rates are higher and a large subset of positive calls could not have been made using standard cfDNA screening.


Assuntos
Ácidos Nucleicos Livres , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Estudo de Associação Genômica Ampla , Diagnóstico Pré-Natal/métodos , Aberrações Cromossômicas , Serviços de Laboratório Clínico/normas , Feminino , Humanos , Gravidez , Diagnóstico Pré-Natal/normas , Fatores de Risco , Sensibilidade e Especificidade
9.
Clin Chem ; 62(12): 1621-1629, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27694391

RESUMO

BACKGROUND: Current methods for noninvasive prenatal testing (NIPT) ascertain fetal aneuploidies using either direct counting measures of DNA fragments from specific genomic regions or relative measures of single nucleotide polymorphism frequencies. Alternatively, the ratios of paralogous sequence pairs were predicted to reflect fetal aneuploidy. We developed a NIPT assay that uses paralog sequences to enable noninvasive detection of fetal trisomy 21 (T21) and trisomy 18 (T18) using cell-free DNA (cfDNA) from maternal plasma. METHODS: A total of 1060 primer pairs were designed to determine fetal aneuploidy status, fetal sex, and fetal fraction. Each library was prepared from cfDNA by coamplifying all 1060 target pairs together in a single reaction well. Products were measured using massively parallel sequencing and deviations from expected paralog ratios were determined based on the read depth from each paralog. RESULTS: We evaluated this assay in a blinded set of 480 cfDNA samples with fetal aneuploidy status determined by the MaterniT21® PLUS assay. Samples were sequenced (mean = 2.3 million reads) with 432 samples returning a result. Using the MaterniT21 PLUS assay for paired plasma aliquots from the same individuals as a reference, all 385 euploid samples, all 31 T21 samples, and 14 of 16 T18 samples were detected with no false positive results observed. CONCLUSIONS: This study introduces a novel NIPT aneuploidy detection approach using targeted sequencing of paralog motifs and establishes proof-of-concept for a potentially low-cost, highly scalable method for the identification of selected fetal aneuploidies with performance and nonreportable rate similar to other published methods.


Assuntos
Aneuploidia , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Diagnóstico Pré-Natal , Análise de Sequência de DNA , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , DNA/análise , Humanos
10.
Am J Obstet Gynecol ; 215(2): 227.e1-227.e16, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26899906

RESUMO

BACKGROUND: Current cell-free DNA assessment of fetal chromosomes does not analyze and report on all chromosomes. Hence, a significant proportion of fetal chromosomal abnormalities are not detectable by current noninvasive methods. Here we report the clinical validation of a novel noninvasive prenatal test (NIPT) designed to detect genomewide gains and losses of chromosomal material ≥7 Mb and losses associated with specific deletions <7 Mb. OBJECTIVE: The objective of this study is to provide a clinical validation of the sensitivity and specificity of a novel NIPT for detection of genomewide abnormalities. STUDY DESIGN: This retrospective, blinded study included maternal plasma collected from 1222 study subjects with pregnancies at increased risk for fetal chromosomal abnormalities that were assessed for trisomy 21 (T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies (SCAs), fetal sex, genomewide copy number variants (CNVs) ≥7 Mb, and select deletions <7 Mb. Performance was assessed by comparing test results with findings from G-band karyotyping, microarray data, or high coverage sequencing. RESULTS: Clinical sensitivity within this study was determined to be 100% for T21 (95% confidence interval [CI], 94.6-100%), T18 (95% CI, 84.4-100%), T13 (95% CI, 74.7-100%), and SCAs (95% CI, 84-100%), and 97.7% for genomewide CNVs (95% CI, 86.2-99.9%). Clinical specificity within this study was determined to be 100% for T21 (95% CI, 99.6-100%), T18 (95% CI, 99.6-100%), and T13 (95% CI, 99.6-100%), and 99.9% for SCAs and CNVs (95% CI, 99.4-100% for both). Fetal sex classification had an accuracy of 99.6% (95% CI, 98.9-99.8%). CONCLUSION: This study has demonstrated that genomewide NIPT for fetal chromosomal abnormalities can provide high resolution, sensitive, and specific detection of a wide range of subchromosomal and whole chromosomal abnormalities that were previously only detectable by invasive karyotype analysis. In some instances, this NIPT also provided additional clarification about the origin of genetic material that had not been identified by invasive karyotype analysis.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Variações do Número de Cópias de DNA , Diagnóstico Pré-Natal/métodos , Adolescente , Adulto , Transtornos Cromossômicos/diagnóstico por imagem , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Idade Materna , Pessoa de Meia-Idade , Gravidez , Estudos Retrospectivos , Análise de Sequência de DNA , Adulto Jovem
11.
Prenat Diagn ; 35(8): 810-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25967380

RESUMO

OBJECTIVE: This study introduces a novel method, referred to as SeqFF, for estimating the fetal DNA fraction in the plasma of pregnant women and to infer the underlying mechanism that allows for such statistical modeling. METHODS: Autosomal regional read counts from whole-genome massively parallel single-end sequencing of circulating cell-free DNA (ccfDNA) from the plasma of 25 312 pregnant women were used to train a multivariate model. The pretrained model was then applied to 505 pregnant samples to assess the performance of SeqFF against known methodologies for fetal DNA fraction calculations. RESULTS: Pearson's correlation between chromosome Y and SeqFF for pregnancies with male fetuses from two independent cohorts ranged from 0.932 to 0.938. Comparison between a single-nucleotide polymorphism-based approach and SeqFF yielded a Pearson's correlation of 0.921. Paired-end sequencing suggests that shorter ccfDNA, that is, less than 150 bp in length, is nonuniformly distributed across the genome. Regions exhibiting an increased proportion of short ccfDNA, which are more likely of fetal origin, tend to provide more information in the SeqFF calculations. CONCLUSION: SeqFF is a robust and direct method to determine fetal DNA fraction. Furthermore, the method is applicable to both male and female pregnancies and can greatly improve the accuracy of noninvasive prenatal testing for fetal copy number variation.


Assuntos
DNA/sangue , Feto , Sequenciamento de Nucleotídeos em Larga Escala , Testes para Triagem do Soro Materno/métodos , Análise de Sequência de DNA/métodos , Sistema Livre de Células , Feminino , Humanos , Masculino , Modelos Estatísticos , Análise Multivariada , Polimorfismo de Nucleotídeo Único , Gravidez , Estudos Retrospectivos
12.
PLoS One ; 9(10): e109173, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289665

RESUMO

OBJECTIVE: As the first laboratory to offer massively parallel sequencing-based noninvasive prenatal testing (NIPT) for fetal aneuploidies, Sequenom Laboratories has been able to collect the largest clinical population experience data to date, including >100,000 clinical samples from all 50 U.S. states and 13 other countries. The objective of this study is to give a robust clinical picture of the current laboratory performance of the MaterniT21 PLUS LDT. STUDY DESIGN: The study includes plasma samples collected from patients with high-risk pregnancies in our CLIA-licensed, CAP-accredited laboratory between August 2012 to June 2013. Samples were assessed for trisomies 13, 18, 21 and for the presence of chromosome Y-specific DNA. Sample data and ad hoc outcome information provided by the clinician was compiled and reviewed to determine the characteristics of this patient population, as well as estimate the assay performance in a clinical setting. RESULTS: NIPT patients most commonly undergo testing at an average of 15 weeks, 3 days gestation; and average 35.1 years of age. The average turnaround time is 4.54 business days and an overall 1.3% not reportable rate. The positivity rate for Trisomy 21 was 1.51%, followed by 0.45% and 0.21% rate for Trisomies 18 and 13, respectively. NIPT positivity rates are similar to previous large clinical studies of aneuploidy in women of maternal age ≥ 35 undergoing amniocentesis. In this population 3519 patients had multifetal gestations (3.5%) with 2.61% yielding a positive NIPT result. CONCLUSION: NIPT has been commercially offered for just over 2 years and the clinical use by patients and clinicians has increased significantly. The risks associated with invasive testing have been substantially reduced by providing another assessment of aneuploidy status in high-risk patients. The accuracy and NIPT assay positivity rate are as predicted by clinical validations and the test demonstrates improvement in the current standard of care.


Assuntos
Aneuploidia , Testes Genéticos , Diagnóstico Pré-Natal , Adulto , Transtornos Cromossômicos/diagnóstico , Feminino , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Gravidez , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Biol Psychiatry ; 74(7): 511-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23702428

RESUMO

BACKGROUND: Abuse of heroin and prescription opiate medications has grown to disturbing levels. Opioids mediate their effects through mu opioid receptors (MOR), but minimal information exists regarding MOR-related striatal signaling relevant to the human condition. The striatum is a structure central to reward and habitual behavior and neurobiological changes in this region are thought to underlie the pathophysiology of addiction disorders. METHODS: We examined molecular mechanisms related to MOR in postmortem human brain striatal specimens from a homogenous European Caucasian population of heroin abusers and control subjects and in an animal model of heroin self-administration. Expression of ets-like kinase 1 (ELK1) was examined in relation to polymorphism of the MOR gene OPRM1 and drug history. RESULTS: A characteristic feature of heroin abusers was decreased expression of MOR and extracellular regulated kinase signaling networks, concomitant with dysregulation of the downstream transcription factor ELK1. Striatal ELK1 in heroin abusers associated with the polymorphism rs2075572 in OPRM1 in a genotype dose-dependent manner and correlated with documented history of heroin use, an effect reproduced in an animal model that emphasizes a direct relationship between repeated heroin exposure and ELK1 dysregulation. A central role of ELK1 was evidenced by an unbiased whole transcriptome microarray that revealed ~20% of downregulated genes in human heroin abusers are ELK1 targets. Using chromatin immune precipitation, we confirmed decreased ELK1 promoter occupancy of the target gene Use1. CONCLUSIONS: ELK1 is a potential key transcriptional regulatory factor in striatal disturbances associated with heroin abuse and relevant to genetic mutation of OPRM1.


Assuntos
Corpo Estriado/metabolismo , Dependência de Heroína/metabolismo , Núcleo Accumbens/metabolismo , Receptores Opioides mu/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Feminino , Dependência de Heroína/genética , Humanos , Masculino , Polimorfismo Genético , Ratos , Ratos Long-Evans , Receptores Opioides mu/genética , Transdução de Sinais , Proteínas Elk-1 do Domínio ets/genética
14.
Prenat Diagn ; 33(6): 591-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23592550

RESUMO

OBJECTIVE: Whole-genome sequencing of circulating cell free (ccf) DNA from maternal plasma has enabled noninvasive prenatal testing for common autosomal aneuploidies. The purpose of this study was to extend the detection to include common sex chromosome aneuploidies (SCAs): [47,XXX], [45,X], [47,XXY], and [47,XYY] syndromes. METHOD: Massively parallel sequencing was performed on ccf DNA isolated from the plasma of 1564 pregnant women with known fetal karyotype. A classification algorithm for SCA detection was constructed and trained on this cohort. Another study of 411 maternal samples from women with blinded-to-laboratory fetal karyotypes was then performed to determine the accuracy of the classification algorithm. RESULTS: In the training cohort, the new algorithm had a detection rate (DR) of 100% (95%CI: 82.3%, 100%), a false positive rate (FPR) of 0.1% (95%CI: 0%, 0.3%), and nonreportable rate of 6% (95%CI: 4.9%, 7.4%) for SCA determination. The blinded validation yielded similar results: DR of 96.2% (95%CI: 78.4%, 99.8%), FPR of 0.3% (95%CI: 0%, 1.8%), and nonreportable rate of 5% (95%CI: 3.2%, 7.7%) for SCA determination CONCLUSION: Noninvasive prenatal identification of the most common sex chromosome aneuploidies is possible using ccf DNA and massively parallel sequencing with a high DR and a low FPR.


Assuntos
Aneuploidia , Diagnóstico Pré-Natal/métodos , Análise de Sequência de DNA/métodos , Aberrações dos Cromossomos Sexuais , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Estudos de Coortes , DNA/sangue , DNA/genética , Feminino , Feto/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mães , Gravidez/sangue
15.
PLoS One ; 8(3): e57381, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483908

RESUMO

BACKGROUND: Circulating cell-free (ccf) fetal DNA comprises 3-20% of all the cell-free DNA present in maternal plasma. Numerous research and clinical studies have described the analysis of ccf DNA using next generation sequencing for the detection of fetal aneuploidies with high sensitivity and specificity. We sought to extend the utility of this approach by assessing semi-automated library preparation, higher sample multiplexing during sequencing, and improved bioinformatic tools to enable a higher throughput, more efficient assay while maintaining or improving clinical performance. METHODS: Whole blood (10mL) was collected from pregnant female donors and plasma separated using centrifugation. Ccf DNA was extracted using column-based methods. Libraries were prepared using an optimized semi-automated library preparation method and sequenced on an Illumina HiSeq2000 sequencer in a 12-plex format. Z-scores were calculated for affected chromosomes using a robust method after normalization and genomic segment filtering. Classification was based upon a standard normal transformed cutoff value of z = 3 for chromosome 21 and z = 3.95 for chromosomes 18 and 13. RESULTS: Two parallel assay development studies using a total of more than 1900 ccf DNA samples were performed to evaluate the technical feasibility of automating library preparation and increasing the sample multiplexing level. These processes were subsequently combined and a study of 1587 samples was completed to verify the stability of the process-optimized assay. Finally, an unblinded clinical evaluation of 1269 euploid and aneuploid samples utilizing this high-throughput assay coupled to improved bioinformatic procedures was performed. We were able to correctly detect all aneuploid cases with extremely low false positive rates of 0.09%, <0.01%, and 0.08% for trisomies 21, 18, and 13, respectively. CONCLUSIONS: These data suggest that the developed laboratory methods in concert with improved bioinformatic approaches enable higher sample throughput while maintaining high classification accuracy.


Assuntos
Aneuploidia , DNA/sangue , Feto/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Biblioteca Gênica , Humanos , Gravidez , Sensibilidade e Especificidade
16.
Dev Cell ; 23(5): 981-94, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23153495

RESUMO

How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18(Cre) to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration speed of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased BMP inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated BMP signaling in knockout hair shaft progenitors and demonstrate that Bmp6 inhibits cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased BMP activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning BMP-mediated mesenchymal-epithelial crosstalk.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Fatores de Transcrição SOXB1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Morfogenética Óssea 6/metabolismo , Proteínas Morfogenéticas Ósseas/deficiência , Movimento Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Folículo Piloso/citologia , Folículo Piloso/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Transcriptoma
17.
Nat Immunol ; 13(11): 1118-28, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023392

RESUMO

We assessed gene expression in tissue macrophages from various mouse organs. The diversity in gene expression among different populations of macrophages was considerable. Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes. The mRNA encoding other transcription factors, such as Gata6, was associated with single macrophage populations. We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells.


Assuntos
Antígenos CD/genética , Macrófagos/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Antígenos CD/imunologia , Diferenciação Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Fígado/citologia , Fígado/imunologia , Fígado/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Microglia/citologia , Microglia/imunologia , Microglia/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , RNA Mensageiro/imunologia , Baço/citologia , Baço/imunologia , Baço/metabolismo , Fatores de Transcrição/imunologia
18.
J Pharmacol Exp Ther ; 343(2): 509-19, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22869928

RESUMO

Acquired drug resistance represents a major obstacle to using sunitinib for the treatment of solid tumors. Here, we examined the cellular and molecular alterations in tumors that are associated with acquired brain tumor resistance to sunitinib by using an in vivo model. U87MG tumors obtained from nude mice that received sunitinib (40 mg/kg/day) for 30 days were classified into sunitinib-sensitive and -resistant groups based on tumor volume and underwent targeted gene microarray and protein array analyses. The expression of several angiogenesis-associated genes was significantly modulated in sunitinib-treated tumors compared with those in control tumors (p<0.05), whereas no significant differences were observed between sunitinib-sensitive and -resistant tumors (p>0.05). Tumor vasculature based on microvessel density, neurogenin 2 chondroitin sulfate proteoglycan density, and α-smooth muscle actin density was also similar in sunitinib-treatment groups (p>0.05). The moderate increase in unbound sunitinib tumor-to-plasma area-under-the-curve ratio in sunitinib-resistant mice was accompanied by up-regulated ATP-binding cassette G2 expression in tumor. The most profound difference between the sunitinib-sensitive and -resistant groups was found in the expression of several phosphorylated proteins involved in intracellular signaling. In particular, phospholipase C-γ1 phosphorylation in sunitinib-resistant tumors was up-regulated by 2.6-fold compared with that in sunitinib-sensitive tumors (p<0.05). In conclusion, acquired sunitinib resistance in U87MG tumors is not associated with revascularization in tumors, but rather with the activation of alternate prosurvival pathways involved in an escape mechanism facilitating tumor growth and possibly insufficient drug uptake in tumor cells caused by an up-regulated membrane efflux transporter.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioma/tratamento farmacológico , Sobrevivência de Enxerto/efeitos dos fármacos , Indóis/farmacologia , Pirróis/farmacologia , Inibidores da Angiogênese/farmacocinética , Animais , Antineoplásicos/farmacocinética , Western Blotting , Imunofluorescência , Glioma/patologia , Humanos , Indóis/farmacocinética , Masculino , Camundongos , Camundongos Nus , Microdiálise , Transplante de Neoplasias , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fenótipo , Fosfolipase C gama/biossíntese , Fosfolipase C gama/genética , Reação em Cadeia da Polimerase , Pirróis/farmacocinética , Sunitinibe
19.
Nat Med ; 18(4): 580-8, 2012 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-22406746

RESUMO

Kidney fibrosis is a common process that leads to the progression of various types of kidney disease. We used an integrated computational and experimental systems biology approach to identify protein kinases that regulate gene expression changes in the kidneys of human immunodeficiency virus (HIV) transgenic mice (Tg26 mice), which have both tubulointerstitial fibrosis and glomerulosclerosis. We identified homeo-domain interacting protein kinase 2 (HIPK2) as a key regulator of kidney fibrosis. HIPK2 was upregulated in the kidneys of Tg26 mice and in those of patients with various kidney diseases. HIV infection increased the protein concentrations of HIPK2 by promoting oxidative stress, which inhibited the seven in absentia homolog 1 (SIAH1)-mediated proteasomal degradation of HIPK2. HIPK2 induced apoptosis and the expression of epithelial-to-mesenchymal transition markers in kidney epithelial cells by activating the p53, transforming growth factor ß (TGF-ß)-SMAD family member 3 (Smad3) and Wnt-Notch pathways. Knockout of HIPK2 improved renal function and attenuated proteinuria and kidney fibrosis in Tg26 mice, as well as in other murine models of kidney fibrosis. We therefore conclude that HIPK2 is a potential target for anti-fibrosis therapy.


Assuntos
Proteínas de Transporte/metabolismo , Fibrose/fisiopatologia , Nefropatias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima/fisiologia , Análise de Variância , Animais , Apoptose/genética , Diferenciação Celular/genética , Células Cultivadas , Creatinina/urina , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Hidroxiprolina/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , NF-kappa B/metabolismo , Proteínas Nucleares , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética , Proteína Smad3/metabolismo , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima/genética , Via de Sinalização Wnt/genética
20.
PLoS Comput Biol ; 7(12): e1002319, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22219718

RESUMO

Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.


Assuntos
Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas , Proteômica/métodos , Algoritmos , Animais , Simulação por Computador , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Estatísticos , Conformação Molecular , Ligação Proteica , Proteínas Quinases/química , Proteína Fosfatase 2/química , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA