Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Chem X ; 13: 100247, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35499029

RESUMO

The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.

2.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917637

RESUMO

The majority of snacks expanded by extrusion (SEE) are made with vegetable sources, to improve their nutritional content; it has been proposed to incorporate squid (Dosidicus gigas), due to its high protein content, low price and high availability. However, the interaction of proteins of animal origin with starch during extrusion causes negative effects on the sensory properties of SEE, so it is necessary to know the type of protein-carbohydrate interactions and their effect on these properties. The objective of this research was to study the interaction of proteins and carbohydrates of SEE elaborated with squid mantle, potato and corn. The nutritional composition and protein digestibility were evaluated, Fourier transform infrared (FTIR) and Differential Scanning Calorimetry (DSC) were used to study the formation of protein-starch complexes and the possible regions responsible for their interactions. The SEE had a high protein content (40-85%) and biological value (>93%). The melting temperature (Tm) was found between 145 and 225 °C; the Tm values in extruded samples are directly proportional to the squid content. The extrusion process reduced the amine groups I and II responsible for the protein-protein interaction and increased the O-glucosidic bonds, so these bonds could be responsible for the protein-carbohydrate interactions.


Assuntos
Varredura Diferencial de Calorimetria , Decapodiformes/química , Proteínas/química , Lanches , Solanum tuberosum/química , Amido/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Probiotics Antimicrob Proteins ; 13(4): 1033-1043, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512646

RESUMO

Studies have shown that the intracellular content of probiotic (postbiotics) has antioxidant properties, which can improve the antioxidant status in vivo. However, its absorption and mechanisms underlying the protective effects are still unknown. The antioxidant capacity of Lacticaseibacillus casei CRL431 (IC-431) postbiotics was determined after an in vitro simulated digestive process. Permeability of antioxidant constituents of IC-431 was determined by an ex vivo everted duodenum assay. Aflatoxin B1-induced oxidative stress rat models were established and treated with IC-431; biomarkers of hepatic mitochondrial function and H2O2 levels, oxidative stress, and oxidative stress index (OSi) were examined. The antioxidant capacity of IC-431 (477 ± 45.25 µmol Trolox Equivalent/L) was reduced by exposure to the simulated digestive process. No difference (p > 0.05) was found among digested and the permeate fraction of IC-431. A protective effect was observed by significantly lower OSi and higher liver glutathione peroxidase and catalase activities. Lower H2O2 production, a higher degree of mitochondrial uncoupling, and lower mitochondrial respiration coefficient were also observed (p < 0.05). These results suggest that IC-431 antioxidant components permeate intestinal barriers to enter the bloodstream and regulate antioxidant status during AFB1-induced oxidative stress by reducing hepatic mitochondrial dysfunction, thus enhancing antioxidant enzyme response.


Assuntos
Aflatoxina B1 , Lacticaseibacillus casei , Mitocôndrias , Estresse Oxidativo , Probióticos , Aflatoxina B1/toxicidade , Animais , Antioxidantes , Peróxido de Hidrogênio , Mitocôndrias/fisiologia , Ratos
4.
J Dairy Sci ; 103(1): 242-253, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733845

RESUMO

Lactococcus lactis is the lactic acid bacteria most frequently used for the production of cheese starter cultures, mainly because of their efficient production of aroma compounds. However, commercial cultures do not always produce the typical aroma notes of artisanal raw-milk cheeses. Thus, the objective of this study was to characterize the volatile compounds generated by wild L. lactis strains in Mexican Fresco cheese made with pasteurized milk. Four strains of wild L. lactis were evaluated for their aroma production in Mexican Fresco cheese using sensory and instrumental analysis. The aroma profiles were evaluated by descriptive sensory analysis. Volatiles were determined by solid-phase microextraction and gas chromatography-mass spectrometry. Principal component analysis was applied to interpret analytical and sensory data. Mexican Fresco cheese aroma was described as milkfat, yogurt, yeasty, barny, dirty socks, and Fresco cheese. Cheese with L. lactis strains R7 or B7 were most similar to commercial raw milk Fresco cheese in all aroma descriptors. Volatiles identified in all cheeses were esters, acids, alcohols, ketones, and aldehydes, but the main differences were found for total volatile relative abundance. Also, volatile concentrations (µg/g) in commercial raw milk Fresco cheese and cheeses made with L. lactis R7 or B7 were 4 methyl esters [C4 (4.15 vs. 5.47-13.74), C6 (0.12 vs. 1.53-15.34), C8 (1.06 vs. 0.32-6.65), and C10 (0.62 vs. 0.41-3.74)], 7 acids [C4 (1.92 vs. 0.30-9.29), C6-C10 (0.05-4.48 vs. 0.11-30.45), and C12 (0.13 vs. 0.28-0.30)], 2 alcohols [(3-methyl-1-butanol (3.48 vs. 3.4-13.13) and phenylethyl alcohol (0.10 vs. 0.63-2.04)], and 1 ketone (acetoin; 1.22 vs. 0.28-0.99). The first 3 principal components explained 78.2% of the total variation and clearly distinguished 3 main groups. Cheese made with L. lactis R7 was classified in the same group as key compounds associated with Fresco cheese aroma and show potential as a starter in Mexican Fresco cheese manufacture.


Assuntos
Queijo/análise , Lactococcus lactis/química , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , México , Análise Multivariada , Microextração em Fase Sólida , Especificidade da Espécie
5.
CienciaUAT ; 14(1): 133-144, jul.-dic. 2019. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1124376

RESUMO

Resumen El lactosuero posee una gran cantidad de los componentes de la leche, sin embargo, una alta proporción del volumen generado se sigue tirando, provocando pérdida de nutrientes y problemas de contaminación. El objetivo del presente trabajo fue proveer información sobre las propiedades nutricionales, funcionales y biológicas del lactosuero, generado por la industria quesera artesanal, así como evidencias científicas recientes que sustentan, bajo distintos enfoques tecnológicos, el potencial de aprovechamiento, mediante su transformación o recuperación para adicionarle valor. Las oportunidades en la valorización del lactosuero, a través de la elaboración de diversos productos lácteos, como el requesón (queso de suero), bebidas fermentadas o con frutas, bebidas para deportistas, bebidas alcohólicas, mantequilla de suero, dulces, helados y paletas, reflejan el nicho de oportunidades para hacer la industria quesera artesanal más redituable. El cambio de paradigmas en los productores artesanales, en percibir al lactosuero como una fuente de co-productos para su recuperación, transformación y reincorporación a sus procesos, acorde a las capacidades tecnológicas de dicha industria, y no como un subproducto, reduciría las pérdidas de componentes de alto valor (e.g., proteína, lípidos y azúcares), trayendo consigo efectos benéficos, tanto ambientales como económicos.


Abstract Whey contains a high concentration of milk components. However, a high volume of it continues to be discarded to the environment, leading to a loss in nutrients and pollution problems. The objective of the present review is oriented to provide information on the nutritional, functional and biological properties of the whey generated by the artisanal cheese idustry. Furthermore, scientific evidence supporting the different opportunities for its valorization, revised under different technological approaches is included. The potential of whey valorization, through its recovery or transformation into value-added products, includes its use in a diversity of food products. Whey use includes the production of requesón (whey cheese), fermented beverages, fruit-flavored drinks, sports drinks, alcoholic beverages, whey buttermilk, ice-cream, candies and popsicles. The transformation of whey produced by the artisanal cheese industry, offer a niche of opportunities to make this industry more profitable. The reduction in loss of highly valuable components (e.g., protein, fat and lactose) by using whey, according to their technological capabilities, represents a suitable option to its valorization, by changing the perception of whey as a waste, but as a source of co-products. The recovery, transformation and reincorporation into the processes, would bring beneficial economic effects to artisanal producers and reduce the environmental impact caused by this industry.

6.
Food Sci Biotechnol ; 28(3): 751-757, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31093432

RESUMO

Chemical properties of fish gelatins differ from those of conventional mammalian sources, representing an attractive technological alternative for the food industry. Ray filleting generates a considerable amount of skin waste that can be used as a collagen source for gelatin extraction. Thus, this research evaluated the HCl and CH3COOH effect, at 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, and 0.2 M, on extraction yield, molecular weight distribution, and gel strength (GS) of whiptail stingray (Dasyatis brevis) skin gelatins. Results showed differences (P < 0.05) between acid type and concentration used. CH3COOH (0.15 M) gave the highest extraction yield (7.0% vs. 5.5% at 0.15 M HCl) and GS (653 ± 71 g vs. 619.5 ± 82 g at 0.2 M HCl). Gelatin electrophoretic profile from CH3COOH revealed α-/ß-components and high molecular weight (> 200 kDa) polymers. Ray gelatin GS was higher than commercial bovine gelatin, suggesting its possible use for technological food applications.

7.
J Texture Stud ; 49(5): 476-484, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29363734

RESUMO

The giant squid (Dosidicus gigas) is a species of commercial interest as a source of protein, and it can be developed into ready-to-eat food products, including expanded extrusion snacks (EES). EES are prepared primarily from starch; however, adding animal protein increases the nutritional contents. The objective of this study was to evaluate the effect of the protein-carbohydrate interactions on the physical and morphological characteristics of an EES made of squid mantle and potato-corn flour. The independent variable was the squid mantle content (40, 60, 80, and 100%) and two controls (01 = 100% potato, 02 = 100% corn). The expansion rate (ER) of the sample is significantly minor (p < .5) when the squid mantle content increases ER = 2.0, 1.8 1.4 to 40, 60, and 80%, respectively. In samples with more protein, crispness and crunchiness were reduced, whereas the hardness increased. Digital imaging analysis indicated that the interaction between protein and starch causes significant morphometric changes to the fractal dimension (2.665-2.739) and lacunarity (0.61-1.29). The results showed that it is possible to incorporate up to 60% squid mantle to prepare EES that possess texture and morphometric characteristics competitive in reported studies with snacks usually incorporating flours, corn, and wheat in the formulations. PRACTICAL APPLICATIONS: The giant squid is a very attractive species because its meat has low caloric intake, high protein content, and is an important source of omega 3 fatty acids. Despite the desirable qualities of the squid meat its consumption is very low due to the low diffusion of the properties of its meat, acid, and ammoniacal flavor, rigid texture that requires prolonged cooking times and lack of alternatives of consumption. In Mexico, this type of squid is mainly destined for export as frozen mantle and products with little added value, which generates little economic benefit. Therefore, the results of this research may be of interest to the squid processing industry, which demands new forms of consumption of this marine species to increase their commercialization and added value.


Assuntos
Decapodiformes , Proteínas Alimentares/análise , Fast Foods/análise , Farinha/análise , Animais , Tecnologia de Alimentos , Solanum tuberosum , Zea mays
8.
Appl Biochem Biotechnol ; 182(1): 181-196, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27830465

RESUMO

Plant proteases are capable of performing several functions in biological systems, and their use is attractive for biotechnological process due to their interesting catalytic properties. Bromelia pinguin (aguama) is a wild abundant natural resource in several regions of Central America and the Caribbean Islands but is underutilized. Their fruits are rich in proteases with properties that are still unknown, but they represent an attractive source of enzymes for biotechnological applications. Thus, the proteolytic activity in enzymatic crude extracts (CEs) from wild B. pinguin fruits was partially characterized. Enzymes in CEs showed high proteolytic activity at acid (pH 2.0-4.0) and neutral alkaline (pH 7.0-9.0) conditions, indicating that different types of active proteases are present. Proteolytic activity inhibition by the use of specific protease inhibitors indicated that aspartic, cysteine, and serine proteases are the main types of proteases present in CEs. Activity at pH 3.0 was stable in a broad range of temperatures (25-50 °C) and retained its activity in the presence of surfactants (SDS, Tween-80), reducing agents (DTT, 2-mercapoethanol), and organic solvents (methanol, ethanol, acetone, 2-propanol), which suggests that B. pinguin proteases are potential candidates for their application in brewing, detergent, and pharmaceutical industries.


Assuntos
Ácido Aspártico Proteases/química , Bromelia/enzimologia , Cisteína Proteases/química , Frutas/enzimologia , Proteínas de Plantas/química , Serina Proteases/química , Ácido Aspártico Proteases/antagonistas & inibidores , Ácido Aspártico Proteases/isolamento & purificação , Bromelia/química , Cisteína Proteases/isolamento & purificação , Ditiotreitol/química , Ensaios Enzimáticos , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Mercaptoetanol/química , Extratos Vegetais/química , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/isolamento & purificação , Polissorbatos/química , Inibidores de Proteases/química , Proteólise , Serina Proteases/isolamento & purificação , Dodecilsulfato de Sódio/química , Solventes/química
9.
Food Chem ; 109(4): 782-9, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26049991

RESUMO

Pacific whiting (Merluccius productus) muscle was used to produce hydrolysates with 10%, 15% and 20% degree of hydrolysis (DH) using the commercial protease Alcalase(®) and were characterized at pH 4.0, 7.0 and 10 according their solubility, emulsifying and foaming properties. Protein recovered in soluble fractions increased proportionally with the hydrolytic process, yielded 48.6±1.9, 58.6±4.1 and 67.8±1.4 of total protein after 10%, 15% and 20% DH, respectively. Freeze-dried hydrolysates presented almost 100% solubility (p>0.05) at the different pHs evaluated. Emulsifying properties (EC, EAI and ESI) were not affected by DH as most samples showed similar (p>0.05) results. Higher EC (p⩽0.05) than sodium caseinate, used as control, were obtained at pH 4 for most hydrolysates. Hydrolysates showed very low foaming capacity not affected by pH; but foam stability was equal or even better (p>0.05) than bovine serum albumin (BSA), except at pH 4.0. Results suggest that hydrolysates from Pacific whiting muscle can be produced with similar or better functional properties than the food ingredients used as standards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA