Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(4): e0037123, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38445896

RESUMO

Chlamydia trachomatis is an intracellular bacterial pathogen that undergoes a biphasic developmental cycle, consisting of intracellular reticulate bodies and extracellular infectious elementary bodies. A conserved bacterial protease, HtrA, was shown previously to be essential for Chlamydia during the reticulate body phase, using a novel inhibitor (JO146). In this study, isolates selected for the survival of JO146 treatment were found to have polymorphisms in the acyl-acyl carrier protein synthetase gene (aasC). AasC encodes the enzyme responsible for activating fatty acids from the host cell or synthesis to be incorporated into lipid bilayers. The isolates had distinct lipidomes with varied fatty acid compositions. A reduction in the lipid compositions that HtrA prefers to bind to was detected, yet HtrA and MOMP (a key outer membrane protein) were present at higher levels in the variants. Reduced progeny production and an earlier cellular exit were observed. Transcriptome analysis identified that multiple genes were downregulated in the variants especially stress and DNA processing factors. Here, we have shown that the fatty acid composition of chlamydial lipids, HtrA, and membrane proteins interplay and, when disrupted, impact chlamydial stress response that could trigger early cellular exit. IMPORTANCE: Chlamydia trachomatis is an important obligate intracellular pathogen that has a unique biphasic developmental cycle. HtrA is an essential stress or virulence protease in many bacteria, with many different functions. Previously, we demonstrated that HtrA is critical for Chlamydia using a novel inhibitor. In the present study, we characterized genetic variants of Chlamydia trachomatis with reduced susceptibility to the HtrA inhibitor. The variants were changed in membrane fatty acid composition, outer membrane proteins, and transcription of stress genes. Earlier and more synchronous cellular exit was observed. Combined, this links stress response to fatty acids, membrane proteins, and HtrA interplay with the outcome of disrupted timing of chlamydial cellular exit.


Assuntos
Chlamydia trachomatis , Ácidos Graxos , Chlamydia trachomatis/genética , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética
2.
Eur J Med Chem ; 230: 114064, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007862

RESUMO

High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.


Assuntos
Prolina , Serina Proteases , Antibacterianos/farmacologia , Chlamydia trachomatis , Humanos , Peptídeos , Prolina/farmacologia
3.
Bioorg Med Chem ; 27(18): 4185-4199, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31395511

RESUMO

Chlamydia trachomatis high temperature requirement A (CtHtrA) is a serine protease that performs proteolytic and chaperone functions in pathogenic Chlamydiae; and is seen as a prospective drug target. This study details the strategies employed in optimizing the irreversible CtHtrA inhibitor JO146 [Boc-Val-Pro-ValP(OPh)2] for potency and selectivity. A series of adaptations both at the warhead and specificity residues P1 and P3 yielded 23 analogues, which were tested in human neutrophil elastase (HNE) and CtHtrA enzyme assays as well as Chlamydia cell culture assays. Trypsin and chymotrypsin inhibition assays were also conducted to measure off-target selectivity. Replacing the phosphonate moiety with α-ketobenzothiazole produced a reversible analogue with considerable CtHtrA inhibition and cell culture activity. Tertiary leucine at P3 (8a) yielded approximately 33-fold increase in CtHtrA inhibitory activity, with an IC50 = 0.68 ±â€¯0.02 µM against HNE, while valine at P1 retained the best anti-chlamydial activity. This study provides a pathway for obtaining clinically relevant inhibitors.


Assuntos
Chlamydia trachomatis/patogenicidade , Peptídeos/química , Humanos , Relação Estrutura-Atividade
4.
Pathog Dis ; 77(3)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201421

RESUMO

Serological assays can be used to investigate the population burden of infection and potentially sequelae from Chlamydia. We investigated the PGP3 ELISA as a sero-epidemiological tool for infection or sub-fertility in Australian and Samoan women. The PGP3 ELISA absorbance levels were compared between groups of women with infertility, fertile, and current chlamydial infections. In the Australian groups, women with chlamydial tubal factor infertility had significantly higher absorbance levels in the PGP3 ELISA compared to fertile women (P < 0.0001), but not when compared to women with current chlamydial infection (P = 0.44). In the Samoan study, where the prevalence of chlamydial infections is much higher there were significant differences in the PGP3 ELISA absorbance levels between chlamydial sub-fertile women and fertile women (P = 0.003). There was no difference between chlamydial sub-fertile women and women with a current infection (P = 0.829). The results support that the PGP3 assay is effective for sero-epidemiological analysis of burden of infection, but not for evaluation of chlamydial pathological sequelae such as infertility.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Chlamydia/diagnóstico , Chlamydia/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Monitoramento Epidemiológico , Testes Sorológicos/métodos , Adolescente , Adulto , Austrália/epidemiologia , Infecções por Chlamydia/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Samoa/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA