Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36824889

RESUMO

In facultative symbioses, only a fraction of hosts are associated with a symbiont. Understanding why specific host and symbiont strains are associated can inform us of the evolutionary forces affecting facultative symbioses. Possibilities include ongoing host-symbiont coevolution driven by reciprocal selection, or priority effects that are neutral in respect to the host-symbiont interaction. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness estimates for naturally co-occurring (native) host and symbiont combinations compared to nonnative combinations. We used the Dictyostelium discoideum - Paraburkholderia bonniea system to test this hypothesis. P. bonniea features a reduced genome size relative to another Paraburkholderia symbiont of D. discoideum, indicating a significant history of coevolution with its host. Facultative symbionts may experience continued genome reduction if coevolution is ongoing, or their genome size may have reached a stable state if the symbiosis has also stabilized. Our work demonstrates that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead represents a stable facultative symbiosis. Specifically associated host and symbiont strains in this system are the result of priority effects, and presently unassociated hosts are simply uncolonized. We find evidence for a virulence-transmission trade-off without host strain specificity, and identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in benevolence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA