Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Europace ; 26(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38252933

RESUMO

AIMS: This study aims to evaluate the prognostic impact of the arrhythmogenic substrate size in symptomatic Brugada syndrome (BrS) as well as to validate the long-term safety and effectiveness of epicardial radiofrequency ablation (RFA) compared with no-RFA group. METHODS AND RESULTS: In this prospective investigational long-term registry study, 257 selected symptomatic BrS patients with implantable cardioverter defibrillator (ICD) implantation were included. Among them, 206 patients underwent epicardial RFA and were monitored for over 5 years post-ablation (RFA group), while 51 patients received only ICD implantation declining RFA. Primary endpoints included risk factors for ventricular fibrillation (VF) events pre-ablation and freedom from VF events post-ablation. In the RFA group, BrS substrates were identified in the epicardial surface of the right ventricle. During the pre-RFA follow-up period (median 27 months), VF episodes and VF storms were experienced by 53 patients. Independent risk factors included substrate size [hazard ratio (HR), 1.13; 95% confidence interval (CI), 1.08-1.18; P < 0.001], aborted cardiac arrest (HR, 2.98; 95% CI, 1.68-5.28; P < 0.001), and SCN5A variants (HR, 2.22; 95% CI, 1.15-4.27; P = 0.017). In the post-RFA follow-up (median 40 months), the RFA group demonstrated superior outcomes compared with no-RFA (P < 0.001) without major procedure-related complications. CONCLUSION: Our study underscores the role of BrS substrate extent as a crucial prognostic factor for recurrent VF and validates the safety and efficacy of RFA when compared with a no-RFA group. Our findings highlight the importance of ajmaline in guiding epicardial mapping/ablation in symptomatic BrS patients, laying the groundwork for further exploration of non-invasive methods to guide informed clinical decision-making.


Assuntos
Síndrome de Brugada , Ablação por Cateter , Desfibriladores Implantáveis , Humanos , Síndrome de Brugada/complicações , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/cirurgia , Desfibriladores Implantáveis/efeitos adversos , Estudos Prospectivos , Eletrocardiografia , Arritmias Cardíacas/etiologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/terapia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Resultado do Tratamento
2.
Eur Heart J ; 42(11): 1082-1090, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33221895

RESUMO

AIMS: Brugada syndrome (BrS) is associated with an increased risk of sudden cardiac death due to ventricular tachycardia/fibrillation (VT/VF) in young, otherwise healthy individuals. Despite SCN5A being the most commonly known mutated gene to date, the genotype-phenotype relationship is poorly understood and remains uncertain. This study aimed to elucidate the genotype-phenotype correlation in BrS. METHODS AND RESULTS: Brugada syndrome probands deemed at high risk of future arrhythmic events underwent genetic testing and phenotype characterization by the means of epicardial arrhythmogenic substrate (AS) mapping, and were divided into two groups according to the presence or absence of SCN5A mutation. Two-hundred probands (160 males, 80%; mean age 42.6 ± 12.2 years) were included in this study. Patients harbouring SCN5A mutations exhibited a spontaneous type 1 pattern and experienced aborted cardiac arrest or spontaneous VT/VF more frequently than the other subjects. SCN5A-positive patients exhibited a larger epicardial AS area, more prolonged electrograms and more frequently observed non-invasive late potentials. The presence of an SCN5A mutation explained >26% of the variation in the epicardial AS area and was the strongest predictor of a large epicardial area. CONCLUSION: In BrS, the genetic background is the main determinant for the extent of the electrophysiological abnormalities. SCN5A mutation carriers exhibit more pronounced epicardial electrical abnormalities and a more aggressive clinical presentation. These results contribute to the understanding of the genetic determinants of the BrS phenotypic expression and provide possible explanations for the varying degrees of disease expression.


Assuntos
Síndrome de Brugada , Taquicardia Ventricular , Adulto , Síndrome de Brugada/genética , Eletrocardiografia , Mapeamento Epicárdico , Humanos , Masculino , Pessoa de Meia-Idade , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fenótipo , Taquicardia Ventricular/genética , Fibrilação Ventricular
3.
Heart Rhythm ; 17(4): 637-645, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31756528

RESUMO

BACKGROUND: The relationship between the typical electrocardiographic pattern and electromechanical abnormalities has never been systematically explored in Brugada syndrome (BrS). OBJECTIVES: The aims of this study were to characterize the electromechanical substrate in patients with BrS and to evaluate the relationship between electrical and mechanical abnormalities. METHODS: We enrolled 50 consecutive high-risk patients with BrS (mean age 42 ± 7.2 years), with implantable cardioverter-defibrillator implantation for primary or secondary prevention of ventricular tachyarrhythmias (ventricular tachycardia/ventricular fibrillation [VT/VF]), undergoing substrate mapping and ablation. Patients underwent 3-dimensional (3D) echocardiography with 3D wall motion/deformation quantification and electroanatomic mapping before and after ajmaline administration (1 mg/kg in 5 minutes); 3D mechanical changes were compared with 50 age- and sex-matched controls. The effect of substrate ablation on electromechanical abnormalities was also assessed. RESULTS: In all patients, ajmaline administration induced Brugada type 1 pattern, with a significant increase in the electrical substrate (P < .001), particularly in patients with previous spontaneous VT/VF (P = .007). Induction of Brugada pattern was associated with lowering of right ventricular (RV) ejection fraction (P < .001) and worsening of 3D RV mechanical function (P < .001), particularly in the anterior free wall of the RV outflow tract, without changes in controls. RV electrical and mechanical abnormalities were highly correlated (r = 0.728, P < .001). By multivariate analysis, only the area of RV dysfunction was an independent predictor of spontaneous VT/VF (odds ratio 1.480; 95% confidence interval 1.159-1.889; P = .002). Substrate ablation abolished both BrS-electrocardiographic pattern and mechanical abnormalities, despite ajmaline rechallenge. CONCLUSION: BrS is an electromechanical disease affecting the RV. The typical BrS pattern reflects an extensive RV arrhythmic substrate, driving consistent RV mechanical abnormalities. Substrate ablation abolished both Brugada pattern and mechanical abnormalities.


Assuntos
Síndrome de Brugada/fisiopatologia , Eletrocardiografia/métodos , Mapeamento Epicárdico/métodos , Ventrículos do Coração/fisiopatologia , Adulto , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade
4.
Europace ; 21(12): 1900-1910, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647530

RESUMO

AIMS: Brugada syndrome (BrS) represents a major cause of sudden cardiac death in young individuals. The risk stratification to forecast future life-threatening events is still controversial. Non-invasive assessment of late potentials (LPs) has been proposed as a risk stratification tool. However, their nature in BrS is still undetermined. The purpose of this study is to assess the electrophysiological determinants of non-invasive LPs. METHODS AND RESULTS: Two hundred and fifty consecutive patients with (Group 1, n = 96) and without (Group 2, n = 154) BrS-related symptoms were prospectively enrolled in the registry. Signal-averaged electrocardiogram (SAECG) was performed in all subjects before undergoing epicardial mapping. Group 1 patients exhibited larger arrhythmogenic substrates (AS; 5.8 ± 2.8 vs. 2.6 ± 2.1 cm2, P < 0.001) with more delayed potentials (220.4 ± 46.0 vs. 186.7 ± 42.3 ms, P < 0.001). Late potentials were present in 82/96 (85.4%) Group 1 and in 31/154 (20.1%) Group 2 individuals (P < 0.001). Patients exhibiting LPs had more frequently a spontaneous Type 1 pattern (30.1% vs. 10.9%, P < 0.001), SCN5A mutation (34.5% vs. 21.2%, P = 0.02), and exhibited a larger AS with longer potentials (5.8 ± 2.7 vs. 2.2 ± 1.7 cm2; 231.2 ± 37.3 vs. 213.8 ± 39.0 ms; P < 0.001, respectively). Arrhythmogenic substrate dimension was the strongest predictor of the presence of LPs (odds ratio 1.9; P < 0.001). An AS area of at least 3.5 cm2 identified patients with LPs (area under the curve 0.88, 95% confidence interval 0.843-0.931; P < 0.001) with a sensitivity of 86%, specificity 88%, positive predictive value 85%, and negative predictive value 89%. CONCLUSION: The results of this study support the role of the epicardial AS as an electrophysiological determinant of non-invasive LPs, which may serve as a tool in the non-invasive assessment of the BrS substrate, as SAECG-LPs could be considered an expression of the abnormal epicardial electrical activity.ClinicalTrials.gov number (NCT02641431; NCT03106701).


Assuntos
Potenciais de Ação , Síndrome de Brugada/fisiopatologia , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores Implantáveis , Eletrocardiografia/métodos , Mapeamento Epicárdico/métodos , Processamento de Sinais Assistido por Computador , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Adolescente , Adulto , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Taquicardia Ventricular/terapia , Fibrilação Ventricular/terapia , Adulto Jovem
5.
Ann Biomed Eng ; 44(2): 590-603, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26294009

RESUMO

Transcatheter aortic valve replacement (TAVR) represents an established recent technology in a high risk patient base. To better understand TAVR performance, a fluid-structure interaction (FSI) model of a self-expandable transcatheter aortic valve was proposed. After an in vitro durability experiment was done to test the valve, the FSI model was built to reproduce the experimental test. Lastly, the FSI model was used to simulate the virtual implant and performance in a patient-specific case. Results showed that the leaflet opening area during the cycle was similar to that of the in vitro test and the difference of the maximum leaflet opening between the two methodologies was of 0.42%. Furthermore, the FSI simulation quantified the pressure and velocity fields. The computed strain amplitudes in the stent frame showed that this distribution in the patient-specific case is highly affected by the aortic root anatomy, suggesting that the in vitro tests that follow standards might not be representative of the real behavior of the percutaneous valve. The patient-specific case also compared in vivo literature data on fast opening and closing characteristics of the aortic valve during systolic ejection. FSI simulations represent useful tools in determining design errors or optimization potentials before the fabrication of aortic valve prototypes and the performance of tests.


Assuntos
Valva Aórtica/fisiopatologia , Próteses Valvulares Cardíacas , Modelos Cardiovasculares , Estresse Mecânico , Substituição da Valva Aórtica Transcateter , Valva Aórtica/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA