Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ChemSusChem ; : e202400554, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728595

RESUMO

Electrochemical energy storage systems based on sulfur and lithium can theoretically deliver high energy with the further benefit of low cost. However, the working mechanism of this device involves the dissolution of sulfur to high-molecular weight lithium polysulfides (LiPs with general formula Li2Sn, n≥4) in the electrolyte during the discharge process. Therefore, the resulting migration of partially dissociated LiPs by diffusion or under the effect of the electric field to the lithium anode, activates an internal shuttle mechanism, reduces the active material and in general leads to loss of performance and cycling stability. These drawbacks poses challenges to the commercialization of Li/S cells in the short term. In this study, we report on the decoration of reduced graphene oxide with MoO3 particles to enhance interactions with LiPs and retain sulfur at the cathode side. The combination of experiments and density functional theory calculations demonstrated improvements in binding interactions between the cathode and sulfur species, enhancing the cycling stability of the Li/S cells.

2.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513297

RESUMO

This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend's total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 µA/µM, a linear response ranging from 5 to 70 µM, and a lower detection limit (LOD) of 2.99 µM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor's performance was validated through the Folin-Ciocâlteu standard method.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanotubos de Carbono/química , Café , Ouro/química , Trametes , Espectroscopia de Infravermelho com Transformada de Fourier , Smartphone , Nanopartículas Metálicas/química , Eletrodos , Polifenóis , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas
3.
Chembiochem ; 24(9): e202300030, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36867729

RESUMO

One of the main problems in developing immunosensors featuring carbon nanotubes (CNTs) is immobilizing antibodies (Abs) onto the CNT surface to afford selective binding to target antigens (Ags). In this work, we developed a practical supramolecular Ab conjugation strategy based on resorc[4]arene modifiers. To improve the Ab orientation on the CNTs surface and optimizing the Ab/Ag interaction, we exploited the host-guest approach by synthesizing two newly resorc[4]arene linkers R1 and R2 via well-established procedures. The upper rim was decorated with eight methoxyl groups to promote selective recognition of the fragment crystallizable (Fc ) region of the Ab. Moreover, the lower rim was functionalized with 3-bromopropyloxy or 3-azidopropiloxy substituents to bind the macrocycles on the multi-walled carbon nanotubes (MWCNTs) surface. Accordingly, several chemical modifications of MWCNTs were evaluated. After the morphological and electrochemical characterization of nanomaterials, the resorc[4]arene-modified MWCNTs were deposited onto a glassy carbon electrode surface to evaluate their potential applicability for label-free immunosensor development. The most promising system showed an improved electrode active area (AEL ) of almost 20 % and a site-oriented immobilization of the SARS-CoV-2 spike protein S1 antibody (Ab-SPS1). The developed immunosensor revealed a good sensitivity (23.64 µA mL ng-1 cm-2 ) towards the SPS1 antigen and a limit of detection (LOD) of 1.01 ng mL-1 .


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanotubos de Carbono , Humanos , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Imunoensaio , SARS-CoV-2 , Anticorpos/química , Antígenos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
4.
Bioconjug Chem ; 34(3): 529-537, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753752

RESUMO

In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Ouro/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos/química , Eletrodos , Nanopartículas Metálicas/química , Limite de Detecção
5.
Talanta ; 251: 123755, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932635

RESUMO

We report a new sensitive label-free electrochemical immunosensor to detect Vitamin D3 (25-OHD3) in untreated serum samples. To this aim, a graphite screen printed electrode (SPE) was modified using cysteamine (CYM) functionalized core-shell magnetic nanoparticles (Au@MNPs) then, the 25-OHD3 antibody (AbD) was immobilized via glutaraldehyde crosslinking. The several steps involved in the immunosensor development and 25-OHD3 analysis were monitored by using differential pulse voltammetry (DPV). The developed immunosensor showed a LOD of 2.4 ng mL-1 and a linear range between 7.4 and 70 ng mL-1. The effectiveness of the immunosensor in human serum analysis was assessed by comparing the results obtained with the chemiluminescence-immunoassay (CLIA) reference method. The high sensitivity and excellent agreement with the reference method suggest its potential use as a POCT to monitor hypovitaminosis 25-OHD levels.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Colecalciferol , Cisteamina , Técnicas Eletroquímicas/métodos , Eletrodos , Glutaral , Ouro , Humanos , Imunoensaio/métodos , Limite de Detecção
6.
Anal Bioanal Chem ; 414(6): 2055-2064, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043261

RESUMO

This work presents the realization of a label-free electrochemical immunosensor for the quick, cheap, and straightforward determination of atrazine. This biodevice is based on developing a technological platform where a gold screen printed electrode (Au-SPE) surface was modified by the electrodeposition of a highly porous gold layer. As an internal probe redox, a Prussian Blue thin layer (PB) was then electrosynthetized onto the modified Au-SPE. Atrazine antibody (Ab-ATZ) was immobilized using G protein-functionalized magnetic nanoparticles (MNPs@protG) to ensure the correct orientation of the antibody to enhance the immunoaffinity. Under optimum experimental conditions, the electrochemical characterization of the developed immunosensor displays a linearity range towards atrazine within 0.05-1.5 ng/mL, a LOD of 0.011 ng/mL good reproducibility and stability. The immunosensor was tested in the analysis of spiked drinking water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of atrazine in real matrices.


Assuntos
Atrazina , Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
7.
Chemistry ; 26(38): 8400-8406, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240571

RESUMO

One of the main problems in the development of immunosensors is to overcome the complexity of binding antibodies to the sensor surface. Most immobilizing methods lead to a random orientation of antibodies with a lower binding site density and immunoaffinity. In order to control the orientation of antibody immobilization, several resorc[4]arene derivatives were designed and synthesized. After the spectroscopic characterization of resorc[4]arene self-assembled monolayers (SAMs) onto gold films, the surface coverage and the orientation of insulin antibody (Ab-Ins) were assessed by a surface plasmon resonance (SPR) technique and compared with a random immobilization method. Experimental results combined with theoretical studies confirmed the dipole-dipole interaction as an important factor in antibody orientation and demonstrated the importance of the upper rim functionalization of resorcarenes. Accordingly, resorcarene 5 showed a major binding force towards Ab-Ins thanks to the H-bond interactions with the amine protein groups. Based on these findings, the resorcarene-based immunosensor is a powerful system with improved sensitivity providing new insight into sensor development.


Assuntos
Anticorpos Imobilizados/química , Anticorpos/química , Ouro/química , Ressonância de Plasmônio de Superfície/métodos , Sítios de Ligação
8.
RSC Adv ; 10(48): 29031-29042, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520043

RESUMO

Lignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo-physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state. Electrochemical properties, temperature and pH stability, and reusability of the novel systems have been studied, as well as their capacity to perform as colorimetric biosensors in the detection of glucose using ABTS and dopamine as chromogenic substrates. A boosting effect of LNPs was observed during cyclovoltammetry analysis. The limit of detection (LOD) was found to be better than, or comparable to, that previously reported for other HRP-GOX immobilized systems, the best results being again obtained in the presence of a cationic lignin polyelectrolyte. Thus renewable lignin platforms worked as smart and functional devices for the preparation of green biosensors in the detection of glucose.

9.
Nat Prod Res ; 33(7): 1015-1025, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27771968

RESUMO

Traditional cleaning methods with organic solvents often are not suitable for removal of aged resin so researchers have to find new formulations. In this work, a case study is reported in which new microemulsions were applied on the surface of a painting covered by some aged resin layers used during a previous restoration. Based on the quality of the intervention and the analysis of a sample of the varnish carried out with both MALDI-TOF and ATR-IR spectrometers, it was conjectured that this undesired material could be an acrylic polymer. So it was chosen to use xylene, ethyl acetate and propylene carbonate (XYL and EAPC) microemulsions (O/W oil in water). The first is able to solubilise only acrylic polymers, the second may solve both acrylic and vinyl resins. The first has had the greatest effect allowing complete varnish removal and original artwork restoration.


Assuntos
Resinas Acrílicas/isolamento & purificação , Emulsões/farmacologia , Pinturas , Resinas Sintéticas/isolamento & purificação , Solventes/química , Arte , Pintura/análise , Polímeros/química , Refratometria , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tensoativos
10.
Biosensors (Basel) ; 8(4)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441783

RESUMO

A single-use electrochemical screen-printed electrode is reported based on biomimetic properties of nanoceria particles (CeNPs). The developed tool showed an easy approach compared to the classical spectrophotometric methods reported in literature in terms of ease of use, cost, portability, and unnecessary secondary reagents. The sensor allowed the detection of the total antioxidant capacity (TAC) in wine samples. The sensor has been optimized and characterized electrochemically and then tested with antioxidant compounds occurred in wine samples. The electrochemical CeNPs modified sensor has been used for detection of TAC in white and red commercial wines and the data compared to the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)-based spectrophotometric method. Finally, the obtained results have demonstrated that the proposed sensor was suitable for the simple and quick evaluation of TAC in beverage samples.


Assuntos
Antioxidantes/química , Eletroquímica/métodos , Nanopartículas Metálicas/química , Espectrofotometria , Vinho
11.
Biosens Bioelectron ; 112: 8-17, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29684749

RESUMO

In this study, polythiophene copolymers have been used as modifier for electrode surfaces in order to allow the immobilization of active pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH) and to simultaneously improve the direct electrical connection of the enzyme with the electrode. Polymer films are electrosynthesized in aqueous solution without the need of surfactants onto carbon nanotubes modified gold electrodes from mixtures of 3-thiopheneacetic acid (ThCH2CO2H) and 3-methoxythiophene (ThOCH3) using a potentiostatic pulse method. Polythiophene deposition significantly improves the bioelectrocatalysis of PQQ-GDH: the process starts at - 200 mV vs. Ag/AgCl and allows well-defined glucose detection at 0 V vs. Ag/AgCl with high current density. Several parameters of the electro-polymerization method have been evaluated to maximize the anodic current output after enzyme coupling. The polymer deposited by this new procedure has been morphologically and chemically characterized by different methods (SEM, EDX, FT-IR, UV-Vis, XPS and Raman spectroscopy). The bioelectrocatalytic response towards increasing glucose concentrations exhibits a dynamic range extending from 1 µM to 2 mM. The low applied potential allows to avoid interferences from easily oxidizable substances such as uric acid and ascorbic acid. Short and long-term stability has been evaluated. Finally, the PQQ-GDH electrode has been coupled to a bilirubin oxidase (BOD)- and carbon nanotube-based cathode in order to test its performance as anode of a biofuel cell. The promising results suggest a further investigation of this kind of polymers and, in particular, the study of the interaction with other enzymes in order to employ them in building up biosensors and biofuel cells.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Glucose Desidrogenase/química , Glucose/isolamento & purificação , Glucose/química , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Cofator PQQ/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Tiofenos/química
12.
Methods Mol Biol ; 1694: 75-80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080157

RESUMO

In this work a detailed description of the development of amine oxidase-based electrochemical biosensors for the selective determination of the biogenic amines is presented. The enzymes required for this operation are Polyamine Oxidase (PAO) and Spermine Oxidase (SMO) which are physically entrapped in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ), a photo-cross-linkable gel, onto screen printed electrode (SPE) surface. The developed biosensors are deeply characterized in the analysis of biogenic amines by using flow injection amperometric (FIA) technique. The enzymatic electrodes are characterized by good sensitivity, long-term stability, and reproducibility. To test the feasibility of the developed biosensors in the analysis of real matrices, they are used for the analysis of blood samples. The results obtained are in good agreement with those obtained with the GC-MS reference method.


Assuntos
Técnicas Biossensoriais , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Espermidina/análise , Espermina/análise , Aminas Biogênicas/análise , Eletrodos , Poliamina Oxidase
13.
Methods ; 129: 89-95, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600228

RESUMO

In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/isolamento & purificação , Nanoestruturas/química , Glucose/química , Glucose Oxidase/química , Ouro/química , Peróxido de Hidrogênio/química , Platina/química
14.
Sensors (Basel) ; 17(4)2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28394296

RESUMO

In this research, we developed a direct-flow surface plasmon resonance (SPR) immunosensor for ampicillin to perform direct, simple, and fast measurements of this important antibiotic. In order to better evaluate the performance, it was compared with a conventional amperometric immunosensor, working with a competitive format with the aim of finding out experimental real advantages and disadvantages of two respective methods. Results showed that certain analytical features of the new SPR immunodevice, such as the lower limit of detection (LOD) value and the width of the linear range, are poorer than those of a conventional amperometric immunosensor, which adversely affects the application to samples such as natural waters. On the other hand, the SPR immunosensor was more selective to ampicillin, and measurements were more easily and quickly attained compared to those performed with the conventional competitive immunosensor.


Assuntos
Ressonância de Plasmônio de Superfície , Ampicilina , Antibacterianos , Técnicas Biossensoriais , Imunoensaio
15.
Methods Mol Biol ; 1572: 41-53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299680

RESUMO

Electrochemical biosensors provide an attractive means of analyzing the content of a biological sample due to the direct conversion of a biological event to an electronic signal. The signal transduction and the general performance of electrochemical biosensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. We show herein a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features. The use of these nanomaterials improved the electrochemical performance of the proposed biosensor.An application of the nanostructured enzyme-based biosensor has been developed for evaluating the detection of polyphenols either in buffer solution or in real wine samples.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Enzimas , Fulerenos , Ouro , Nanopartículas Metálicas , Polifenóis/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Calibragem , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Enzimas/química , Desenho de Equipamento , Fulerenos/química , Ácido Gálico/análise , Ouro/química , Lacase/análise , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Vinho/análise
16.
Biosens Bioelectron ; 93: 52-56, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27743865

RESUMO

In this work, we developed an impedimetric label-free immunosensor for the detection of 2,4-Dichlorophenoxy Acetic Acid (2,4-D) herbicide either in standard solution and spiked real samples. For this purpose, we prepared by electropolymerization a conductive polymer poly-(aniline-co-3-aminobenzoic acid) (PANABA) then we immobilized anti-2,4-D antibody onto a nanocomposite AuNPs-PANABA-MWCNTs employing the carboxylic moieties as anchor sites. The nanocomposite was synthesized by electrochemical polymerization of aniline and 3-aminobenzoic acid, in the presence of a dispersion of gold nanoparticles, onto a multi-walled carbon nanotubes-based screen printed electrode. Aniline-based copolymer, modified with the nanomaterials, allowed to enhance the electrode conductivity thus obtaining a more sensitive antigen detection. The impedimetric measurements were carried out by electrochemical impedance spectroscopy (EIS) in faradic condition by using Fe(CN)63-/4- as redox probe. The developed impedimetric immunosensor displayed a wide linearity range towards 2,4-D (1-100ppb), good repeatability (RSD 6%), stability and a LOD (0.3ppb) lower than herbicide emission limits.


Assuntos
Ácido 2,4-Diclorofenoxiacético/isolamento & purificação , Técnicas Biossensoriais , Técnicas Eletroquímicas , Ácido 2,4-Diclorofenoxiacético/química , Compostos de Anilina/química , Espectroscopia Dielétrica , Eletrodos , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Polímeros/química
17.
Int J Anal Chem ; 2016: 2981931, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594884

RESUMO

In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared.

18.
Biosensors (Basel) ; 6(2): 22, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187486

RESUMO

In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10(-3) and 10(-1) M, a measurement time of ≤20 min and a high selectivity both towards ß-lactam antibiotics and antibiotics of different classes.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Ressonância de Plasmônio de Superfície , Ampicilina , Antibacterianos , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
19.
Bioelectrochemistry ; 112: 125-31, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27008973

RESUMO

Au nanocorals are grown on gold screen-printed electrodes (SPEs) by using a novel and simple one-step electrodeposition process. Scanning electron microscopy was used for the morphological characterization. The devices were assembled on a three-electrode SPE system, which is flexible and mass producible. The electroactive surface area, determined by cyclic voltammetry in sulphuric acid, was found to be 0.07±0.01cm(2) and 35.3±2.7cm(2) for bare Au and nanocoral Au, respectively. The nanocoral modified SPEs were used to develop an enzymatic glucose biosensor based on H2O2 detection. Au nanocoral electrodes showed a higher sensitivity of 48.3±0.9µA/(mMcm(2)) at +0.45V vs Ag|AgCl compared to a value of 24.6±1.3µA/(mMcm(2)) at +0.70V vs Ag|AgCl obtained with bare Au electrodes. However, the modified electrodes have indeed proven to be extremely powerful for the direct detection of glucose with a non-enzymatic approach. The results confirmed a clear peak observed by using nanocoral Au electrode even in the presence of chloride ions at physiological concentration. Amperometric study carried out at +0.15V vs Ag|AgCl in the presence of 0.12M NaCl showed a linear range for glucose between 0.1 and 13mM.


Assuntos
Técnicas Biossensoriais , Galvanoplastia/métodos , Glucose Oxidase/metabolismo , Glucose/análise , Ouro/química , Nanopartículas Metálicas/química , Eletroquímica , Eletrodos , Glucose/química , Glucose Oxidase/química , Oxirredução , Porosidade
20.
Anal Bioanal Chem ; 408(12): 3203-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26874693

RESUMO

In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4-dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1-110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90%. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA