Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 45, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311674

RESUMO

Cyclic nucleotide-gated (CNG) channels mediate transduction in several sensory neurons. These channels use the free energy of CNs' binding to open the pore, a process referred to as gating. CNG channels belong to the superfamily of voltage-gated channels, where the motion of the α-helix S6 controls gating in most of its members. To date, only the open, cGMP-bound, structure of a CNG channel has been determined at atomic resolution, which is inadequate to determine the molecular events underlying gating. By using electrophysiology, site-directed mutagenesis, chemical modification, and Single Molecule Force Spectroscopy, we demonstrate that opening of CNGA1 channels is initiated by the formation of salt bridges between residues in the C-linker and S5 helix. These events trigger conformational changes of the α-helix S5, transmitted to the P-helix and leading to channel opening. Therefore, the superfamily of voltage-gated channels shares a similar molecular architecture but has evolved divergent gating mechanisms.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , Motivos de Aminoácidos , Sítios de Ligação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Modelos Moleculares , Mutação , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
2.
Sci Rep ; 7(1): 12000, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931892

RESUMO

By combining atomic force microscopy (AFM) imaging and single-molecule force spectroscopy (SMFS), we analyzed membrane proteins of the rod outer segments (OS). With this combined approach we were able to study the membrane proteins in their natural environment. In the plasma membrane we identified native cyclic nucleotide-gated (CNG) channels which are organized in single file strings. We also identified rhodopsin located both in the discs and in the plasma membrane. SMFS reveals strikingly different mechanical properties of rhodopsin unfolding in the two environments. Molecular dynamic simulations suggest that this difference is likely to be related to the higher hydrophobicity of the plasma membrane, due to the higher cholesterol concentration. This increases rhodopsin mechanical stability lowering the rate of transition towards its active form, hindering, in this manner, phototransduction.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Microscopia de Força Atômica/métodos , Segmento Externo da Célula Bastonete/fisiologia , Imagem Individual de Molécula/métodos , Algoritmos , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Masculino , Fenômenos Mecânicos , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Rodopsina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
4.
ACS Omega ; 1(6): 1205-1219, 2016 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457189

RESUMO

The determination at atomic resolution of the three-dimensional molecular structure of membrane proteins such as receptors and several ion channels has been a major breakthrough in structural biology. The molecular structure of several members of the superfamily of voltage-gated ionic channels such as K+ and Na+ is now available. However, despite several attempts, the molecular structure at atomic resolution of the full cyclic nucleotide-gated (CNG) ion channel, although a member of the same superfamily of voltage-gated ion channels, has not been obtained yet, neither by X-ray crystallography nor by electron cryomicroscopy (cryo-EM). It is possible that CNG channels have a high structural heterogeneity, making difficult crystallization and single-particle analysis. To address this issue, we have combined single-molecule force spectroscopy (SMFS) and electrophysiological experiments to characterize the structural heterogeneity of CNGA1 channels expressed in Xenopus laevis oocytes. The unfolding of the cytoplasmic domain had force peaks, occurring with a probability from 0.2 to 0.96. Force peaks during the unfolding of the transmembrane domain had a probability close to 1, but the distribution of the increase in contour length between two successive force peaks had multiple maxima differing by tens of nanometers. Concomitant electrophysiological experiments showed that the rundown in mutant channels S399C is highly variable and that the effect of thiol reagents when specific residues were mutated was consistent with a dynamic structural heterogeneity. These results show that CNGA1 channels have a wide spectrum of native conformations that are difficult to detect with X-ray crystallography and cryo-EM.

5.
Proc Natl Acad Sci U S A ; 112(27): E3619-28, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100907

RESUMO

Cyclic nucleotide-gated (CNG) ion channels, despite a significant homology with the highly selective K(+) channels, do not discriminate among monovalent alkali cations and are permeable also to several organic cations. We combined electrophysiology, molecular dynamics (MD) simulations, and X-ray crystallography to demonstrate that the pore of CNG channels is highly flexible. When a CNG mimic is crystallized in the presence of a variety of monovalent cations, including Na(+), Cs(+), and dimethylammonium (DMA(+)), the side chain of Glu66 in the selectivity filter shows multiple conformations and the diameter of the pore changes significantly. MD simulations indicate that Glu66 and the prolines in the outer vestibule undergo large fluctuations, which are modulated by the ionic species and the voltage. This flexibility underlies the coupling between gating and permeation and the poor ionic selectivity of CNG channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico/fisiologia , Conformação Proteica , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cátions Monovalentes/metabolismo , Bovinos , Césio/metabolismo , Cristalografia por Raios X , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Ativação do Canal Iônico/genética , Transporte de Íons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 112(20): E2715-24, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941368

RESUMO

Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5-10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light.


Assuntos
Modelos Neurológicos , Diester Fosfórico Hidrolases/metabolismo , Segmento Externo da Célula Bastonete/fisiologia , Visão Ocular/fisiologia , Animais , Simulação por Computador , Lasers , Masculino , Técnicas de Patch-Clamp , Estimulação Luminosa , Segmento Externo da Célula Bastonete/enzimologia , Xenopus laevis
7.
Nat Commun ; 6: 7093, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25963832

RESUMO

Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Ativação do Canal Iônico/fisiologia , Análise Espectral/métodos , Animais , Biologia Computacional , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Fenômenos Eletrofisiológicos , Feminino , Folículo Ovariano , Conformação Proteica , Estrutura Terciária de Proteína , Xenopus laevis
8.
J Physiol ; 593(4): 857-70, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25480799

RESUMO

KEY POINTS: Desensitization and inactivation provide a form of short-term memory controlling the firing patterns of excitable cells and adaptation in sensory systems. Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels are thought not to desensitize or inactivate. Here we report that CNG channels do inactivate and that inactivation is controlled by extracellular protons. Titration of a glutamate residue within the selectivity filter destabilizes the pore architecture, which collapses towards a non-conductive, inactivated state in a process reminiscent of the usual C-type inactivation observed in many K(+) channels. These results indicate that inactivation in CNG channels represents a regulatory mechanism that has been neglected thus far, with possible implications in several physiological processes ranging from signal transduction to growth cone navigation. ABSTRACT: Ion channels control ionic fluxes across biological membranes by residing in any of three functionally distinct states: deactivated (closed), activated (open) or inactivated (closed). Unlike many of their cousin K(+) channels, cyclic nucleotide-gated (CNG) channels do not desensitize or inactivate. Using patch recording techniques, we show that when extracellular pH (pHo ) is decreased from 7.4 to 6 or lower, wild-type CNGA1 channels inactivate in a voltage-dependent manner. pHo titration experiments show that at pHo  < 7 the I-V relationships are outwardly rectifying and that inactivation is coupled to current rectification. Single-channel recordings indicate that a fast mechanism of proton blockage underlines current rectification while inactivation arises from conformational changes downstream from protonation. Furthermore, mutagenesis and ionic substitution experiments highlight the role of the selectivity filter in current decline, suggesting analogies with the C-type inactivation observed in K(+) channels. Analysis with Markovian models indicates that the non-independent binding of two protons within the transmembrane electrical field explains both the voltage-dependent blockage and the inactivation. Low pH, by inhibiting the CNGA1 channels in a state-dependent manner, may represent an unrecognized endogenous signal regulating CNG physiological functions in diverse tissues.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Prótons , Animais , Bovinos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , DNA Complementar/genética , Feminino , Concentração de Íons de Hidrogênio , Mutação , Oócitos/fisiologia , Transfecção , Xenopus laevis
9.
Sci Rep ; 3: 1251, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409242

RESUMO

Sensory systems adapt, i.e., they adjust their sensitivity to external stimuli according to the ambient level. In this paper we show that single cell electrophysiological responses of vertebrate olfactory receptors and of photoreceptors to different input protocols exhibit several common features related to adaptation, and that these features can be used to investigate the dynamical structure of the feedback regulation responsible for the adaptation. In particular, we point out that two different forms of adaptation can be observed, in response to steps and to pairs of pulses. These two forms of adaptation appear to be in a dynamical trade-off: the more adaptation to a step is close to perfect, the slower is the recovery in adaptation to pulse pairs and viceversa. Neither of the two forms is explained by the dynamical models currently used to describe adaptation, such as the integral feedback model.


Assuntos
Adaptação Fisiológica , Neurônios Receptores Olfatórios/fisiologia , Células Fotorreceptoras/fisiologia , Ambystoma , Animais
10.
Physiol Rep ; 1(6): e00148, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24400150

RESUMO

In cyclic nucleotide-gated (CNGA1) channels, in the presence of symmetrical ionic conditions, current-voltage (I-V) relationship depends, in a complex way, on the radius of permeating ion. It has been suggested that both the pore and S4 helix contribute to the observed rectification. In the present manuscript, using tail and gating current measurements from homotetrameric CNGA1 channels expressed in Xenopus oocytes, we clarify and quantify the role of the pore and of the S4 helix. We show that in symmetrical Rb(+) and Cs(+) single-channel current rectification dominates macroscopic currents while voltage-dependent gating becomes larger in symmetrical ethylammonium and dimethylammonium, where the open probability strongly depends on voltage. Isochronal tail currents analysis in dimethylammonium shows that at least two voltage-dependent transitions underlie the observed rectification. Only the first voltage-dependent transition is sensible to mutation of charge residues in the S4 helix. Moreover, analysis of tail and gating currents indicates that the number of elementary charges per channel moving across the membrane is less than 2, when they are about 12 in K(+) channels. These results indicate the existence of distinct mechanisms underlying rectification in CNG channels. A restricted motion of the S4 helix together with an inefficient coupling to the channel gate render CNGA1 channels poorly sensitive to voltage in the presence of physiological Na(+) and K(+).

11.
J Physiol ; 590(20): 5075-90, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22869010

RESUMO

Cyclic nucleotide-gated (CNG) channels and K+ channels have a significant sequence identity and are thought to share a similar 3D structure. K+ channels can accommodate simultaneously two or three permeating ions inside their pore and therefore are referred to as multi-ion channels. Also CNGA1 channels are multi-ion channels, as they exhibit an anomalous mole fraction effect (AMFE) in the presence of mixtures of 110 mM Li+ and Cs+ on the cytoplasmic side of the membrane. Several observations have identified the ring of Glu363 in the outer vestibule of the pore as one of the binding sites within the pore of CNGA1 channels. In the present work we identify a second binding site in the selectivity filter of CNGA1 channels controlling AMFE. Here, we show also that Cs+ ions at the intracellular side of the membrane block the entry of Na+ ions. This blockage is almost completely removed at high hyperpolarized voltages as expected if the Cs+ blocking site is located within the transmembrane electric field. Indeed, mutagenesis experiments show that the block is relieved when Thr359 and Thr360 at the intracellular entrance of the selectivity filter are replaced with an alanine. In T359A mutant channels AMFE in the presence of intracellular mixtures of Li+ and Cs+ is still present but is abolished in T360A mutant channels. These results suggest that the ring of Thr360 at the intracellular entrance of the selectivity filter forms another ion binding site in the CNGA1 channel. The two binding sites composed of the rings of Glu363 and Thr360 are not independent; in fact they mediate a powerful coupling between permeation and gating, a specific aspect of CNG channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Metais Alcalinos/metabolismo , Treonina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Técnicas In Vitro , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos , Canais de Potássio/química , Alinhamento de Sequência , Xenopus laevis
12.
Nat Commun ; 3: 973, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828633

RESUMO

Cyclic nucleotide-gated channels belong to the family of voltage-gated ion channels, but pore opening requires the presence of intracellular cyclic nucleotides. In the presence of a saturating agonist, cyclic nucleotide-gated channel gating is voltage independent and it is not known why cyclic nucleotide-gated channels are voltage-insensitive despite harbouring the S4-type voltage sensor. Here we report that, in the presence of Li(+), Na(+) and K(+), the gating of wild-type cyclic nucleotide-gated A1 and native cyclic nucleotide-gated channels is voltage independent, whereas their gating is highly voltage-dependent in the presence of Rb(+), Cs(+) and organic cations. Mutagenesis experiments show that voltage sensing occurs through a voltage sensor composed of charged/polar residues in the pore and of the S4-type voltage sensor. During evolution, cyclic nucleotide-gated channels lose their voltage-sensing ability when Na(+) or K(+) permeate so that the vertebrate photoreceptor cyclic nucleotide-gated channels are open at negative voltages, a necessary condition for phototransduction.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico/fisiologia , Animais , Bovinos , Eletrofisiologia , Feminino , Potenciais da Membrana/fisiologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Salamandridae
13.
Pflugers Arch ; 459(4): 547-55, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19898862

RESUMO

The aminoacid sequences of CNG and K(+) channels share a significant sequence identity, and it has been suggested that these channels have a common ancestral 3D architecture. However, K(+) and CNG channels have profoundly different physiological properties: indeed, K(+) channels have a high ionic selectivity, their gating strongly depends on membrane voltage and when opened by a steady depolarizing voltage several K(+) channels inactivate, whereas CNG channels have a low ion selectivity, their gating is poorly voltage dependent, and they do not desensitize in the presence of a steady concentration of cyclic nucleotides that cause their opening. The purpose of the present review is to summarize and recapitulate functional and structural differences between K(+) and CNG channels with the aim to understand the gating mechanisms of CNG channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Canais de Potássio/genética , Canais de Potássio/metabolismo , Conformação Proteica , Alinhamento de Sequência
14.
Eur Biophys J ; 38(7): 993-1002, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19488745

RESUMO

This work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1(cys-free) background and the effect of intracellular Cd(2+) or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd(2+) ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406C(cys-free) and Q409C(cys-free). Cd(2+) ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1(cys-free) background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399 to Gln409 in homologous subunits move far apart, as expected from the gating in K(+) channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Sequência de Aminoácidos , Animais , Cádmio/farmacologia , Bovinos , Reagentes de Ligações Cruzadas/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Dados de Sequência Molecular , Movimento , Mutação , Estrutura Terciária de Proteína/efeitos dos fármacos , Reagentes de Sulfidrila/farmacologia
15.
J Gen Physiol ; 133(4): 375-86, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19289572

RESUMO

The pore region of cyclic nucleotide-gated (CNG) channels acts as the channel gate. Therefore, events occurring in the cyclic nucleotide-binding (CNB) domain must be coupled to the movements of the pore walls. When Glu363 in the pore region, Leu356 and Thr355 in the P helix, and Phe380 in the upper portion of the S6 helix are mutated into an alanine, gating is impaired: mutant channels E363A, L356A, T355A, and F380A desensitize in the presence of a constant cGMP concentration, contrary to what can be observed in wild-type (WT) CNGA1 channels. Similarly to C-type inactivation of K(+) channels, desensitization in these mutant channels is associated with rearrangements of residues in the outer vestibule. In the desensitized state, Thr364 residues in different subunits become closer and Pro366 becomes more accessible to extracellular reagents. Desensitization is also observed in the mutant channel L356C, but not in the double-mutant channel L356C+F380C. Mutant channels L356F and F380K did not express, but cGMP-gated currents with a normal gating were observed in the double-mutant channels L356F+F380L and L356D+F380K. Experiments with tandem constructs with L356C, F380C, and L356C+F380C and WT channels indicate that the interaction between Leu356 and Phe380 is within the same subunit. These results show that Leu356 forms a hydrophobic interaction with Phe380, coupling the P helix with S6, whereas Glu363 could interact with Thr355, coupling the pore wall to the P helix. These interactions are essential for normal gating and underlie the transduction between the CNB domain and the pore.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico/fisiologia , Nucleotídeos Cíclicos/metabolismo , Sequência de Aminoácidos , Animais , GMP Cíclico/genética , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Feminino , Ativação do Canal Iônico/genética , Dados de Sequência Molecular , Nucleotídeos Cíclicos/genética , Nucleotídeos Cíclicos/fisiologia , Mutação Puntual , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Xenopus laevis
16.
Eur Biophys J ; 38(4): 465-78, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19132361

RESUMO

We investigated conformational changes occurring in the C-linker and cyclic nucleotide-binding (CNB) domain of CNGA1 channels by analyzing the inhibition induced by thiol-specific reagents in mutant channels Q409C and A414C in the open and closed state. Cd(2+) (200 microM) inhibited irreversibly mutant channels Q409C and A414C in the closed but not in the open state. Cd(2+) inhibition was abolished in the mutant A414C(cys-free), in the double mutant A414C + C505T and in the tandem construct A414C + C505T/CNGA1, but it was present in the construct A414C + C505(cys-free). The cross-linker reagent M-2-M inhibited mutant channel Q409C in the open state. M-2-M inhibition in the open state was abolished in the double mutant Q409C + C505T and in the tandem construct Q409C + C505T/CNGA1. These results show that C(alpha) of C505 in the closed state is located at a distance between 4 and 10.5 A from the C(alpha) of A414 of the same subunit, but in the open state C505 moves towards Q409 of the same subunit at a distance that ranges from 10.5 to 12.3 A from C(alpha) of this residue. These results are not consistent with a 3-D structure of the CNGA1 channel homologous to the structure of HCN2 channels either in the open or in the closed state.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Animais , Cádmio/metabolismo , Cádmio/farmacologia , Bovinos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Iônicos/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína
17.
Eur Biophys J ; 37(6): 947-59, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18379773

RESUMO

Three constructs are used for the analysis of biophysical properties of CNGA1 channels: the WT CNGA1 channel, a CNGA1 channel where all endogenous cysteines were removed (CNGA1cys-free) and a construct composed of two CNGA1 subunits connected by a small linker (CNGA1tandem). So far, it has been assumed, but not proven, that the molecular structure of these ionic channels is almost identical. The I/V relations, ionic selectivity to alkali monovalent cations, blockage by tetracaine and TMA+ were not significantly different. The cGMP dose response and blockage by TEA+ and Cd2+ were instead significantly different in CNGA1 and CNGA1cys-free channels, but not in CNGA1 and CNGA1tandem channels. Cd2+ blocked irreversibly the mutant channel A406C in the absence of cGMP. By contrast, Cd2+ did not block the mutant channel A406C in the CNGA1cys-free background (A406Ccys-free), but an irreversible and almost complete blockage was observed in the presence of the cross-linker M-4-M. Results obtained with different MTS cross-linkers and reagents suggest that the 3D structure of the CNGA1cys-free differs from that of the CNGA1 channel and that the distance between homologous residues at position 406 in CNGA1cys-free is longer than in the WT CNGA1 by several Angstroms.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Dados de Sequência Molecular , Relação Estrutura-Atividade , Xenopus laevis
18.
Biophys J ; 90(10): 3599-607, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16513780

RESUMO

With the aim of understanding the relation between structure and gating of CNGA1 channels from bovine rod, an extensive cysteine scanning mutagenesis was performed. Each residue from Phe-375 to Val-424 was mutated into a cysteine one at a time and the modification caused by various sulfhydryl reagents was analyzed. The addition of the mild oxidizing agent copper phenanthroline (CuP) in the open (presence of 1 mM cGMP) or closed state locked the channel in the respective states. A subsequent treatment with the reducing agent DTT restored normal gating fully in the open state and partially in the closed state. This action of CuP was not observed when F380 was mutated into a cysteine in the cysteine-free CNGA1 channel and in the double mutant C314S&F380C. These observations suggest that these effects are mediated by the formation of a disulfide bond (S-S) between F380C and the endogenous Cys-314 in the S5 segment. It can be rationalized by supposing that during gating the S6 segment rotates anticlockwise-when viewed from the extracellular side-by approximately 30 degrees .


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/metabolismo , Oócitos/fisiologia , Animais , Bovinos , Células Cultivadas , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Canais Iônicos/genética , Mutagênese Sítio-Dirigida , Conformação Proteica , Relação Estrutura-Atividade , Xenopus laevis
19.
Brain Res ; 1078(1): 71-9, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16494855

RESUMO

Nickel (Ni(2+)) is a transition metal that exerts multiple and complex effects on N-methyl-d-aspartate (NMDA) channels. In both HEK293 cells and Xenopus laevis oocytes expressing recombinant NMDA receptors, Ni(2+) (<100 microM) caused a potentiation of NR2B-containing channels but a voltage-independent inhibition in those containing NR2A. We took advantage of this different response to investigate the developmental switch between NR2B and NR2A subunits in neonatal rat cerebellar granule cells up to 16 days in vitro (DIV) and in rat embryo cortical neurons up to 35 DIV. In both cultures, the effect of Ni(2+) on the NMDA current gradually changed from potentiating to inhibitory with progressing DIV, and the decline of potentiation correlated well with the decrease in sensitivity for the NR2B specific antagonist ifenprodil. Dose-dependent experiments confirmed that Ni(2+) has a different effect in younger cultures with respect to older ones, in agreement with an increase of the percentage of NR2A-containing receptors. The developmental switch occurred within the first 5 DIV in cerebellar granule cells and after 20 DIV in cortical neurons. All these data indicate that Ni(2+) is a suitable marker for the identification of NR2A and NR2B native channel subunits and can be used to trace the development of NMDA receptor composition.


Assuntos
Neurônios/efeitos dos fármacos , Níquel/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Oligoelementos/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , N-Metilaspartato/farmacologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Biophys J ; 83(6): 3283-95, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12496096

RESUMO

Movements within the cyclic nucleotide-binding domain of cyclic nucleotide-gated channels are thought to underlie the initial phase of channel gating (Tibbs, G. R., D. T. Liu, B. G. Leypold, and S. A. Siegelbaum. 1998. J. Biol. Chem. 273:4497-4505; Zong, X., H. Zucker, F. Hofmann, and M. Biel. 1998. EMBO J. 17:353-362; Matulef, K., G. E. Flynn, and W. N. Zagotta. 1999. Neuron. 24:443-452; Paoletti, P., E. C. Young, and S. A. Siegelbaum. 1999. J. Gen. Physiol. 113:17-33; Johnson, J. P., and W. N. Zagotta. 2001. Nature. 412:917-921). To investigate these movements, cysteine mutation was performed on each of the 28 residues (Leu-583 to Asn-610), which span the agonist-binding domain of the alpha-subunit of the bovine rod cyclic nucleotide-gated channel. The effects of Cd(2+) ions, 2-trimethylammonioethylmethane thiosulfonate (MTSET) and copper phenanthroline (CuP) on channel activity were examined, in excised inside-out patches in the presence and in the absence of a saturating concentration of cGMP. The application of 100 microM Cd(2+) in the presence of saturating concentration of cGMP caused an irreversible and almost complete reduction of the current in mutant channels E594C, I600C, and L601C. In the absence of cGMP, the presence of 100 microM Cd(2+) caused a strong current reduction in all cysteine mutants from Asp-588 to Leu-607, with the exception of mutant channels A589C, M592C, M602C, K603C, and L606C. The selective effect of Cd(2+) ions was very similar to that observed when adding the oxidizing agent CuP to the bath medium, except for mutant channel G597C, where CuP caused a stronger current decrease (67 +/- 7%) than Cd(2+) (23 +/- 4%). In the absence of cGMP, MTSET caused a reduction of the current by >40% in mutant channels L607C, L601C, I600C, G597C, and E594C, whereas in the presence of cGMP only mutant channel L601C was affected. The application of MTSET protected many mutant channels from the effects of Cd(2+) and CuP. These results suggest that, when CNG channels are in the open state, residues from Asp-588 to Leu-607 are in an alpha-helical structure, homologous to the C-helix of the catabolite gene activator protein (Weber, I. T., and T. A. Steitz. 1987. J. Mol. Biol. 198:311-326). Furthermore, residues Glu-594, Gly-597, Ile-600, and Leu-601 of these helices belonging to two different subunits must be in close proximity. In the closed state the C-helices are in a different configuration and undergo significant fluctuations.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/fisiologia , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/fisiologia , Sequência de Aminoácidos , Animais , Cádmio/farmacologia , Clonagem Molecular/métodos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mesilatos/farmacologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Movimento (Física) , Mutagênese Sítio-Dirigida , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Fenantrolinas/farmacologia , Sensibilidade e Especificidade , Xenopus laevis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA