Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39130202

RESUMO

Social behavior across animal species ranges from simple pairwise interactions to thousands of individuals coordinating goal-directed movements. Regardless of the scale, these interactions are governed by the interplay between multimodal sensory information and the internal state of each animal. Here, we investigate how animals use multiple sensory modalities to guide social behavior in the highly social zebrafish (Danio rerio) and uncover the complex features of pairwise interactions early in development. To identify distinct behaviors and understand how they vary over time, we developed a new hidden Markov model with constrained linear-model emissions to automatically classify states of coordinated interaction, using the movements of one animal to predict those of another. We discovered that social behaviors alternate between two interaction states within a single experimental session, distinguished by unique movements and timescales. Long-range interactions, akin to shoaling, rely on vision, while mechanosensation underlies rapid synchronized movements and parallel swimming, precursors of schooling. Altogether, we observe spontaneous interactions in pairs of fish, develop novel hidden Markov modeling to reveal two fundamental interaction modes, and identify the sensory systems involved in each. Our modeling approach to pairwise social interactions has broad applicability to a wide variety of naturalistic behaviors and species and solves the challenge of detecting transient couplings between quasi-periodic time series.

2.
bioRxiv ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39149367

RESUMO

Social behavior across animal species ranges from simple pairwise interactions to thousands of individuals coordinating goal-directed movements. Regardless of the scale, these interactions are governed by the interplay between multimodal sensory information and the internal state of each animal. Here, we investigate how animals use multiple sensory modalities to guide social behavior in the highly social zebrafish ( Danio rerio ) and uncover the complex features of pairwise interactions early in development. To identify distinct behaviors and understand how they vary over time, we developed a new hidden Markov model with constrained linear-model emissions to automatically classify states of coordinated interaction, using the movements of one animal to predict those of another. We discovered that social behaviors alternate between two interaction states within a single experimental session, distinguished by unique movements and timescales. Long-range interactions, akin to shoaling, rely on vision, while mechanosensation underlies rapid synchronized movements and parallel swimming, precursors of schooling. Altogether, we observe spontaneous interactions in pairs of fish, develop novel hidden Markov modeling to reveal two fundamental interaction modes, and identify the sensory systems involved in each. Our modeling approach to pairwise social interactions has broad applicability to a wide variety of naturalistic behaviors and species and solves the challenge of detecting transient couplings between quasi-periodic time series. HIGHLIGHTS: Zebrafish exhibit distinct correlated interaction states with unique timescales.Delayed interactions are visual while synchronization requires mechanosensation.A new class of hidden Markov model segments social interactions into discrete states.States alternate within a session, revealing real-time dynamics of social behavior.

3.
ArXiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39010870

RESUMO

Landmark universal function approximation results for neural networks with trained weights and biases provided impetus for the ubiquitous use of neural networks as learning models in Artificial Intelligence (AI) and neuroscience. Recent work has pushed the bounds of universal approximation by showing that arbitrary functions can similarly be learned by tuning smaller subsets of parameters, for example the output weights, within randomly initialized networks. Motivated by the fact that biases can be interpreted as biologically plausible mechanisms for adjusting unit outputs in neural networks, such as tonic inputs or activation thresholds, we investigate the expressivity of neural networks with random weights where only biases are optimized. We provide theoretical and numerical evidence demonstrating that feedforward neural networks with fixed random weights can be trained to perform multiple tasks by learning biases only. We further show that an equivalent result holds for recurrent neural networks predicting dynamical system trajectories. Our results are relevant to neuroscience, where they demonstrate the potential for behaviourally relevant changes in dynamics without modifying synaptic weights, as well as for AI, where they shed light on multi-task methods such as bias fine-tuning and unit masking.

4.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38617286

RESUMO

Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role for phase transitions in explaining nonlinear modulations of cortical computations.

5.
Cell Rep ; 43(2): 113709, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280196

RESUMO

During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, using computational modeling of visual and auditory task performance data from mice, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we find that animals fluctuate between minutes-long optimal, sub-optimal, and disengaged performance states. Optimal state epochs are predicted by intermediate levels, and reduced variability, of pupil diameter and movement. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states and suggest that mice regulate their arousal during optimal performance.


Assuntos
Nível de Alerta , Movimento , Camundongos , Animais , Nível de Alerta/fisiologia , Análise e Desempenho de Tarefas , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA