Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biologicals ; 54: 22-27, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29753589

RESUMO

Mycoplasmas are potential contaminants that introduce undesirable changes in mammalian cell cultures. They frequently contaminate cell substrates and other starting materials used for manufacturing cell-derived biologics, such as vaccines and pharmaceutical products. Mycoplasma purity testing of live vaccines, active ingredients, raw material, and seed lots is required during vaccine production. Previously, testing using a time-consuming, costly 28-day culture assay, which lacks sensitivity for species that do not grow in culture, was required in the European Pharmacopoeia (Ph. Eur). But now nucleic acid amplification techniques (NATs) can be used. NATs provide rapid results and are sensitive. We evaluated the sensitivity and specificity of a commercially-available NAT to detect individual mycoplasma DNA in a veterinary modified live vaccine using five reference strains recommended by the Ph. Eur. Our results showed that this NAT-based method can be used to detect mycoplasma in spiked live vaccine, without interference from the vaccine components, with a limit of detection of 10 CFU/mL, as required by the Ph. Eur. Its specificity was demonstrated since no mycoplasmas were detected in non-spiked vaccine. This method is undergoing validation as a replacement for the conventional culture method in the production of veterinary live vaccines.


Assuntos
Vacinas Bacterianas/microbiologia , DNA Bacteriano/genética , Contaminação de Medicamentos , Mycoplasma/genética , Reação em Cadeia da Polimerase , Animais , Vacinas Bacterianas/genética , DNA Bacteriano/análise , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Vacinas Atenuadas/genética
2.
Plant Cell ; 24(2): 676-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319053

RESUMO

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Assuntos
Citocromos b/genética , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Proteínas de Plantas/metabolismo , Edição de RNA , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cloroplastos/enzimologia , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo
3.
Plant Physiol ; 146(4): 1553-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18287491

RESUMO

During the cloning of monogenic recessive mutations responsible for a defective kernel phenotype in a Mutator-induced Zea mays mutant collection, we isolated a new mutant allele in Brittle2 (Bt2), which codes for the small subunit of ADP-glucose pyrophosphorylase (AGPase), a key enzyme in starch synthesis. Reverse transcription-polymerase chain reaction experiments with gene-specific primers confirmed a predominant expression of Bt2 in endosperm, of Agpsemzm in embryo, and of Agpslzm in leaf, but also revealed considerable additional expression in various tissues for all three genes. Bt2a, the classical transcript coding for a cytoplasmic isoform, was almost exclusively expressed in the developing endosperm, whereas Bt2b, an alternative transcript coding for a plastidial isoform, was expressed in almost all tissues tested with a pattern very similar to that of Agpslzm. The phenotypic analysis showed that, at 30 d after pollination (DAP), mutant kernels were plumper than wild-type kernels, that the onset of kernel collapse took place between 31 and 35 DAP, and that the number of starch grains was greatly reduced in the mutant endosperm but not the mutant embryo. A comparative transcriptome analysis of wild-type and bt2-H2328 kernels at middevelopment (35 DAP) with the 18K GeneChip Maize Genome Array led to the conclusion that the lack of Bt2-encoded AGPase triggers large-scale changes on the transcriptional level that concern mainly genes involved in carbohydrate or amino acid metabolic pathways. Principal component analysis of (1)H nuclear magnetic resonance metabolic profiles confirmed the impact of the bt2-H2328 mutation on these pathways and revealed that the bt2-H2328 mutation did not only affect the endosperm, but also the embryo at the metabolic level. These data suggest that, in the bt2-H2328 endosperms, regulatory networks are activated that redirect excess carbon into alternative biosynthetic pathways (amino acid synthesis) or into other tissues (embryo).


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Transcrição Gênica , Zea mays/metabolismo , Sequência de Bases , Primers do DNA , Perfilação da Expressão Gênica , Genes de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , RNA Mensageiro/genética , Zea mays/enzimologia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA