Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 22(1): 30, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707886

RESUMO

BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Butóxido de Piperonila , Piretrinas , Animais , Humanos , Côte d'Ivoire , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Estudos Prospectivos , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
2.
Trials ; 23(1): 578, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854371

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) have contributed to the reduction of malaria in sub-Saharan Africa, including Tanzania. However, they rely on daily user behaviour and high coverage which is difficult to maintain. Also, insecticide resistance among malaria vector mosquitoes is contributing to reduced efficacy of control tools. To overcome these problems, we propose to evaluate a new tool for house modification, the insecticide-treated eave nets (ITENs) in combination with insecticide-treated window screens (ITWS) incorporated with dual active ingredient (dual AI) for the control of malaria. METHODS: Four hundred and fifty (450) households with intact walls, open eaves without screens or nets on the windows in Chalinze district will be eligible and recruited upon written informed consent. The households will be randomly allocated into two arms: one with ITENs and ITWS installed and the other without. Malaria parasite detection using a quantitative polymerase chain reaction (qPCR) will be conducted shortly after the long rain (June/July, 2022) as the primary outcome and shortly after the short rain (January/February, 2022) as the secondary outcome. Other secondary outcomes include clinical malaria cases, and density of malaria vectors and nuisance after the short rain and long rain. In addition, surveys will be conducted in households with ITENs and ITWS to estimate the intervention's cost during installation, adverse effects one month after installation, and presence, fabric integrity and user acceptance six and twelve months after installation. Bioefficacy and chemical content will be evaluated twelve months after installation. DISCUSSION: ITENs and ITWS have been shown in Kenya to reduce indoor mosquito density. However, it is not known if indoor mosquito density reduction translates into reduction of malaria cases. Data from the study will measure the potential public health value of an additional intervention for malaria control at the household level in areas of mosquito insecticide resistance that does not require daily adherence. TRIAL REGISTRATION: The study is registered on ClinicalTrials.gov .


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Anopheles/parasitologia , Humanos , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
3.
Malar J ; 21(1): 214, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799172

RESUMO

BACKGROUND: Quality assurance (QA) of insecticide-treated nets (ITNs) delivered to malaria-endemic countries is conducted by measuring physiochemical parameters, but not bioefficacy against malaria mosquitoes. This study explored utility of cone bioassays for pre-delivery QA of pyrethroid ITNs to test the assumption that cone bioassays are consistent across locations, mosquito strains, and laboratories. METHODS: Double-blinded bioassays were conducted on twenty unused pyrethroid ITNs of 4 brands (100 nets, 5 subsamples per net) that had been delivered for mass distribution in Papua New Guinea (PNG) having passed predelivery inspections. Cone bioassays were performed on the same net pieces following World Health Organization (WHO) guidelines at the PNG Institute of Medical Research (PNGIMR) using pyrethroid susceptible Anopheles farauti sensu stricto (s.s.) and at Ifakara Health Institute (IHI), Tanzania using pyrethroid susceptible Anopheles gambiae s.s. Additionally, WHO tunnel tests were conducted at IHI on ITNs that did not meet cone bioefficacy thresholds. Results from IHI and PNGIMR were compared using Spearman's Rank correlation, Bland-Altman (BA) analysis and analysis of agreement. Literature review on the use of cone bioassays for unused pyrethroid ITNs testing was conducted. RESULTS: In cone bioassays, 13/20 nets (65%) at IHI and 8/20 (40%) at PNGIMR met WHO bioefficacy criteria. All nets met WHO bioefficacy criteria on combined cone/tunnel tests at IHI. Results from IHI and PNGIMR correlated on 60-min knockdown (KD60) (rs = 0.6,p = 0.002,n = 20) and 24-h mortality (M24) (rs = 0.9,p < 0.0001,n = 20) but BA showed systematic bias between the results. Of the 5 nets with discrepant result between IHI and PNGIMR, three had confidence intervals overlapping the 80% mortality threshold, with averages within 1-3% of the threshold. Including these as a pass, the agreement between the results to predict ITN failure was good with kappa = 0.79 (0.53-1.00) and 90% accuracy. CONCLUSIONS: Based on these study findings, the WHO cone bioassay is a reproducible bioassay for ITNs with > 80% M24, and for all ITNs provided inherent stochastic variation and systematic bias are accounted for. The literature review confirms that WHO cone bioassay bioefficacy criteria have been previously achieved by all pyrethroid ITNs (unwashed), without the need for additional tunnel tests. The 80% M24 threshold remains the most reliable indicator of pyrethroid ITN quality using pyrethroid susceptible mosquitoes. In the absence of alternative tests, cone bioassays could be used as part of pre-delivery QA.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Bioensaio/métodos , Resistência a Inseticidas , Inseticidas/farmacologia , Laboratórios , Malária/prevenção & controle , Controle de Mosquitos/métodos , Piretrinas/farmacologia
4.
Insects ; 13(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35886738

RESUMO

The standard World Health Organization (WHO) tunnel test is a reliable laboratory bioassay used for "free-flying" testing of insecticide-treated nets (ITNs) bio-efficacy where mosquitoes pass through a ITN sample to reach a live animal bait. Multiple parameters (i.e., bait, exposure time, and mosquito density) may affect the outcomes measured in tunnel tests. Therefore, a comparison was conducted of alternative hosts, exposure time, and lower mosquito density against the current gold standard test (100 mosquitoes, animal bait, and 12-h exposure) as outlined in the WHO ITN evaluation guideline. This was done with the aim to make the tunnel test cheaper and with higher throughput to meet the large sample sizes needed for bio-efficacy durability monitoring of chlorfenapyr ITNs that must be evaluated in "free-flying" bioassays. Methods: A series of experiments were conducted in the WHO tunnel test to evaluate the impact of the following factors on bio-efficacy endpoints of mosquito mortality at 24-h (M24) and 72-h (M72) and blood-feeding success (BFS): (1) baits (rabbit, membrane, human arm); (2) exposure time in the tunnel (1 h vs. 12 h); and (3) mosquito density (50 vs. 100). Finally, an alternative bioassay using a membrane with 50 mosquitoes (membrane-50) was compared to the gold standard bioassay (rabbit with 100 mosquitoes, rabbit-100). Pyrethroid-resistant Anopheles arabiensis and pyrethroid susceptible Anopheles gambiae were used to evaluate Interceptor® and Interceptor® G2 ITNs. Results: Using a human arm as bait gave a very different BFS, which impacted measurements of M24 and M72. The same trends in M24, M72 and BFS were observed for both Interceptor® ITN and Interceptor® G2 unwashed and washed 20 times measured using the gold standard WHO tunnel test (rabbit-100) or rabbit with 50 mosquitoes (rabbit-50). M24, M72 and BFS were not statistically different when either 50 or 100 mosquitoes were used with rabbit bait in the tunnel bioassay for either the susceptible or resistant strains. No systematic difference was observed between rabbit-50 and rabbit-100 in the agreement by the Bland and Altman method (B&A). The mean difference was 4.54% (-22.54-31.62) in BFS and 1.71% (-28.71-32.12) in M72 for rabbit-50 versus rabbit-100. Similar M24, M72 and lower BFS was measured by membrane-50 compared to rabbit-100. No systematic difference was observed in the agreement between membrane-50 and rabbit-100, by B&A. The mean difference was 9.06% (-11.42-29.64) for BSF and -5.44% (-50.3-39.45) for M72. Both membrane-50, rabbit-50 and rabbit-100 predicted the superiority of Interceptor® G2 over Interceptor® ITN for the resistant strain on M72. Conclusion: These results demonstrate that WHO tunnel tests using rabbit bait may be run with 50 mosquitoes to increase sample sizes needed for bio-efficacy durability monitoring of ITNs in "free-flying" bioassays. Using a membrane feeder with 50 mosquitoes is a potential replacement for the WHO tunnel bioassay with animal bait if control blood feeding rates can be improved to 50% because blood feeding impacts mosquito survival after exposure to insecticides.

5.
Malar J ; 21(1): 101, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331242

RESUMO

BACKGROUND: Between 2000 and 2019, more than 1.8 billion long-lasting insecticidal nets (LLINs) were distributed in Africa. While the insecticidal durability of LLINs is around 3 years, nets are commonly discarded 2 years post distribution. This study investigated the factors associated with the decision of users to discard LLINs. METHODS: A mixed-method sequential explanatory approach using a structured questionnaire followed by focus group discussions (FGDs) to collect information on experiences, views, reasons, how and when LLINs are discarded. Out of 6,526 households that responded to the questionnaire of LLINs durability trial, 160 households were randomly selected from the households in four villages in Bagamoyo Tanzania for FGDs but only 155 households participated in the FGDs. Five of the household representatives couldn't participate due to unexpected circumstances. A total of sixteen FGDs each comprising of 8-10 adults were conducted; older women (40-60 years), older men (40-60 years), younger women (18-39 years), younger men (18-39 years). During the FGDs, participants visually inspected seven samples of LLINs that were "too-torn" based on Proportionate Hole Index recommended by the World Health Organization (WHO) guidelines on LLIN testing, the nets were brought to the discussion and participants had to determine if such LLINs were to be kept or discarded. The study assessed responses from the same participants that attended FGD and also responded to the structured questionnaire, 117 participants fulfilled the criteria, thus data from only 117 participants are analysed in this study. RESULTS: In FGDs, integrity of LLIN influenced the decision to discard or keep a net. Those of older age, women, and householders with lower income were more likely to classify a WHO "too-torn" net as "good". The common methods used to discard LLINs were burning and burying. The findings were seen in the quantitative analysis. For every additional hole, the odds of discarding a WHO "too-torn" LLIN increased [OR = 1.05 (95%CI (1.04-1.07)), p < 0.001]. Younger age group [OR = 4.97 (95%CI (3.25-7.32)), p < 0.001], male-headed households [OR = 6.85 (95%CI (4.44 -10.59)), p < 0.001], and wealthy households [OR = 3.88 (95%CI (2.33-6.46)), p < 0.001] were more likely to discard LLINs. CONCLUSION: Integrity of LLIN was the main determinant for discarding or keeping LLINs and the decision to discard the net is associated with socioeconomic status of the household, and the age and gender of respondents. WHO "too torn" nets are encouraged to be used instead of none until replacement, and disposal of nets should be based on recommendation.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Adulto , Idoso , Características da Família , Feminino , Humanos , Inseticidas/análise , Masculino , Carne/análise , Tanzânia
6.
Malar J ; 20(1): 12, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407496

RESUMO

BACKGROUND: N,N-Diethyl-3-methylbenzamide (DEET) topical mosquito repellents are effective personal protection tools. However, DEET-based repellents tend to have low consumer acceptability because they are cosmetically unappealing. More attractive formulations are needed to encourage regular user compliance. This study evaluated the protective efficacy and protection duration of a new topical repellent ointment containing 15% DEET, MAÏA® compared to 20% DEET in ethanol using malaria and dengue mosquito vectors in Bagamoyo Tanzania. METHODS: Fully balanced 3 × 3 Latin square design studies were conducted in large semi-field chambers using laboratory strains of Anopheles gambiae sensu stricto, Anopheles arabiensis and Aedes aegypti. Human volunteers applied either MAÏA® ointment, 20% DEET or ethanol to their lower limbs 6 h before the start of tests. Approximately 100 mosquitoes per strain per replicate were released inside each chamber, with 25 mosquitoes released at regular intervals during the collection period to maintain adequate biting pressure throughout the test. Volunteers recaptured mosquitoes landing on their lower limbs for 6 h over a period of 6 to 12-h post-application of repellents. Data analysis was conducted using mixed-effects logistic regression. RESULTS: The protective efficacy of MAÏA® and 20% DEET was not statistically different for each of the mosquito strains: 95.9% vs. 97.4% against An. gambiae (OR = 1.53 [95% CI 0.93-2.51] p = 0.091); 96.8% vs 97.2% against An. arabiensis (OR = 1.08 [95% CI 0.66-1.77] p = 0.757); 93.1% vs 94.6% against Ae. aegypti (OR = 0.76 [95% CI 0.20-2.80] p = 0.675). Average complete protection time (CPT) in minutes of MAÏA® and that of DEET was similar for each of the mosquito strains: 571.6 min (95% CI 558.3-584.8) vs 575.0 min (95% CI 562.1-587.9) against An. gambiae; 585.6 min (95% CI 571.4-599.8) vs 580.9 min (95% CI 571.1-590.7) against An. arabiensis; 444.1 min (95% CI 401.8-486.5) vs 436.9 min (95% CI 405.2-468.5) against Ae. aegypti. CONCLUSIONS: MAÏA® repellent ointment provides complete protection for 9 h against both An. gambiae and An. arabiensis, and 7 h against Ae. aegypti similar to 20% DEET (in ethanol). MAÏA® repellent ointment can be recommended as a tool for prevention against outdoor biting mosquitoes in tropical locations where the majority of the people spend an ample time outdoor before going to bed.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , DEET/farmacologia , Repelentes de Insetos/farmacologia , Adulto , Animais , Feminino , Humanos , Masculino , Pomadas , Distribuição Aleatória , Método Simples-Cego , Tanzânia , Adulto Jovem
7.
Malar J ; 19(1): 110, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32169081

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the most sustainable and effective malaria control tool currently available. Global targets are for 80% of the population living in malaria endemic areas to have access to (own) and use a LLIN. However, current access to LLINs in endemic areas is 56% due to system inefficiencies and budget limitations. Thus, cost-effective approaches to maximize access to effective LLINs in endemic areas are required. This study evaluated whether LLINs that had been stored for 5 years under manufacturer's recommended conditions may be optimally effective against Anopheles mosquitoes, to inform malaria control programmes and governments on the periods over which LLINs may be stored between distributions, in an effort to maximize use of available LLINs. METHODS: Standard World Health Organization (WHO) bioassays (cone and tunnel test) were used to evaluate the bio-efficacy and wash resistance of Olyset® and DawaPlus® 2.0 (rebranded Tsara® Soft) LLINs after 5 years of storage at 25 °C to 33.4 °C and 40% to 100% relative humidity. In addition, a small scale Ifakara Ambient Chamber test (I-ACT) was conducted to compare the bio-efficacy of one long stored LLINs to one new LLIN of the same brand, washed or unwashed. LLINs were evaluated using laboratory reared fully susceptible Anopheles gambiae sensu stricto (s.s.) (Ifakara strain) and pyrethroid resistant Anopheles arabiensis (Kingani strain). RESULTS: After 5 years of storage, both unwashed and washed, Olyset® and DawaPlus® 2.0 (Tsara® Soft) LLINs passed WHO bio-efficacy criteria on knockdown (KD60) ≥ 95%, 24-h mortality ≥ 80% and ≥ 90% blood-feeding inhibition in WHO assays against susceptible An. gambiae s.s. DawaPlus® 2.0 LLINs also passed combined WHO bioassay criteria against resistant An. arabiensis. Confirmatory I-ACT tests using whole nets demonstrated that long-stored LLINs showed higher efficacy than new LLINs on both feeding inhibition and mortality endpoints against resistant strains. CONCLUSIONS: Even after long-term storage of around 5 years, both Olyset® and DawaPlus® 2.0 LLINs remain efficacious against susceptible Anopheles mosquitoes at optimal storage range of 25 °C to 33.4 °C for temperature and 40% to 100% relative humidity measured by standard WHO methods. DawaPlus® 2.0 (Tsara® Soft) remained efficacious against resistant strain.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida/normas , Inseticidas , Controle de Mosquitos/instrumentação , Animais , Bioensaio , Feminino , Mosquiteiros Tratados com Inseticida/economia , Mosquiteiros Tratados com Inseticida/provisão & distribuição , Fatores de Tempo , Organização Mundial da Saúde
8.
Malar J ; 18(1): 153, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039788

RESUMO

BACKGROUND: Insecticide-treated net (ITN) durability, measured through physical integrity and bioefficacy, must be accurately assessed in order to plan the timely replacement of worn out nets and guide procurement of longer-lasting, cost-effective nets. World Health Organization (WHO) guidance advises that new intervention class ITNs be assessed 3 years after distribution, in experimental huts. In order to obtain information on whole-net efficacy cost-effectively and with adequate replication, a new bioassay, the Ifakara Ambient Chamber Test (I-ACT), a semi-field whole net assay baited with human host, was compared to established WHO durability testing methods. METHODS: Two experiments were conducted using pyrethroid-susceptible female adult Anopheles gambiae sensu stricto comparing bioefficacy of Olyset®, PermaNet® 2.0 and NetProtect® evaluated by I-ACT and WHO cone and tunnel tests. In total, 432 nets (144/brand) were evaluated using I-ACT and cone test. Olyset® nets (132/144) that did not meet the WHO cone test threshold criteria (≥ 80% mortality or ≥ 95% knockdown) were evaluated using tunnel tests with threshold criteria of ≥ 80% mortality or ≥ 90% feeding inhibition for WHO tunnel and I-ACT. Pass rate of nets tested by WHO combined standard WHO bioassays (cone/tunnel tests) was compared to pass in I-ACT only by net brand and time after distribution. RESULTS: Overall, more nets passed WHO threshold criteria when tested with I-ACT than with standard WHO bioassays 92% vs 69%, (OR: 4.1, 95% CI 3.5-4.7, p < 0.0001). The proportion of Olyset® nets that passed differed if WHO 2005 or WHO 2013 LN testing guidelines were followed: 77% vs 71%, respectively. Based on I-ACT results, PermaNet® 2.0 and NetProtect® demonstrated superior mortality and non-inferior feeding inhibition to Olyset® over 3 years of field use in Tanzania. CONCLUSION: Ifakara Ambient Chamber Test may have use for durability studies and non-inferiority testing of new ITN products. It measures composite bioefficacy and physical integrity with both mortality and feeding inhibition endpoints, using fewer mosquitoes than standard WHO bioassays (cone and tunnel tests). The I-ACT is a high-throughput assay to evaluate ITN products that work through either contact toxicity or feeding inhibition. I-ACT allows mosquitoes to interact with a host sleeping underneath a net as encountered in the field, without risk to human participants.


Assuntos
Bioensaio/métodos , Mosquiteiros Tratados com Inseticida/normas , Animais , Anopheles , Bioensaio/normas , Feminino , Humanos , Mosquiteiros Tratados com Inseticida/economia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Tanzânia , Organização Mundial da Saúde
9.
BMC Med ; 15(1): 130, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28712360

RESUMO

BACKGROUND: Resistance and tolerance to Plasmodium falciparum can determine the progression of malaria disease. However, quantitative evidence of tolerance is still limited. We investigated variations in the adverse impact of P. falciparum infections among African pregnant women under different intensities of malaria transmission. METHODS: P. falciparum at delivery was assessed by microscopy, quantitative PCR (qPCR) and placental histology in 946 HIV-uninfected and 768 HIV-infected pregnant women from Benin, Gabon, Kenya and Mozambique. Resistance was defined by the proportion of submicroscopic infections and the levels of anti-parasite antibodies quantified by Luminex, and tolerance by the relationship of pregnancy outcomes with parasite densities at delivery. RESULTS: P. falciparum prevalence by qPCR in peripheral and/or placental blood of HIV-uninfected Mozambican, Gabonese and Beninese women at delivery was 6% (21/340), 11% (28/257) and 41% (143/349), respectively. The proportion of peripheral submicroscopic infections was higher in Benin (83%) than in Mozambique (60%) and Gabon (55%; P = 0.033). Past or chronic placental P. falciparum infection was associated with an increased risk of preterm birth in Mozambican newborns (OR = 7.05, 95% CI 1.79 to 27.82). Microscopic infections were associated with reductions in haemoglobin levels at delivery among Mozambican women (-1.17 g/dL, 95% CI -2.09 to -0.24) as well as with larger drops in haemoglobin levels from recruitment to delivery in Mozambican (-1.66 g/dL, 95% CI -2.68 to -0.64) and Gabonese (-0.91 g/dL, 95% CI -1.79 to -0.02) women. Doubling qPCR-peripheral parasite densities in Mozambican women were associated with decreases in haemoglobin levels at delivery (-0.16 g/dL, 95% CI -0.29 to -0.02) and increases in the drop of haemoglobin levels (-0.29 g/dL, 95% CI -0.44 to -0.14). Beninese women had higher anti-parasite IgGs than Mozambican women (P < 0.001). No difference was found in the proportion of submicroscopic infections nor in the adverse impact of P. falciparum infections in HIV-infected women from Kenya (P. falciparum prevalence by qPCR: 9%, 32/351) and Mozambique (4%, 15/417). CONCLUSIONS: The lowest levels of resistance and tolerance in pregnant women from areas of low malaria transmission were accompanied by the largest adverse impact of P. falciparum infections. Exposure-dependent mechanisms developed by pregnant women to resist the infection and minimise pathology can reduce malaria-related adverse outcomes. Distinguishing both types of defences is important to understand how reductions in transmission can affect malaria disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT00811421 . Registered 18 December 2008.


Assuntos
Malária Falciparum/transmissão , Complicações Infecciosas na Gravidez , Adulto , Parto Obstétrico , Feminino , Gabão , Infecções por HIV/complicações , Humanos , Recém-Nascido , Quênia , Malária Falciparum/epidemiologia , Microscopia , Moçambique , Parto , Placenta , Plasmodium falciparum/imunologia , Gravidez , Resultado da Gravidez , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
10.
PLoS One ; 11(9): e0162524, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27611315

RESUMO

Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum/genética , Teorema de Bayes , Variação Genética/genética , Genótipo , Humanos , Quênia , Repetições de Microssatélites/genética , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
11.
Sci Rep ; 5: 8308, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25655315

RESUMO

Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Dosagem de Genes , Loci Gênicos , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Alelos , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Frequência do Gene , Humanos , Concentração Inibidora 50 , Quênia , Malária Falciparum/tratamento farmacológico , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA