Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39146981

RESUMO

mRNA incorporated in lipid nanoparticles (LNPs) became a new class of vaccine modality for induction of immunity against COVID-19 and ushered in a new era in vaccine development. Here, we report a novel, easy-to-execute, and cost effective engineered extracellular vesicles (EVs)-based combined mRNA and protein vaccine platform (EVX-M+P vaccine) and explore its utility in proof-of-concept immunity studies in the settings of cancer and infectious disease. As a first example, we engineered EVs to contain ovalbumin mRNA and protein (EVOvaM+P) to serve as cancer vaccine against ovalbumin-expressing melanoma tumors. EVOvaM+P administration to mice with established melanoma tumors resulted in tumor regression associated with effective humoral and adaptive immune responses. As a second example, we generated engineered EVs, natural nanoparticle carriers shed by all cells, that contain mRNA and protein Spike (S) protein to serve as a combined mRNA and protein vaccine (EVSpikeM+P vaccine) against SARS-CoV-2 infection. EVSpikeM+P vaccine administration in mice and baboons elicited robust production of neutralizing IgG antibodies against RBD (receptor binding domain) of S protein and S protein specific T cell responses. Our proof-of-concept study describes a new platform with an ability for rapid development of combination mRNA and protein vaccines employing EVs for deployment against cancer and other diseases.

2.
Science ; 384(6703): eadh4567, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935717

RESUMO

Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.


Assuntos
Carcinoma Ductal Pancreático , Células Dendríticas , Imunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/imunologia , Pancreatite/imunologia , Pancreatite/terapia , Microambiente Tumoral/imunologia
3.
ACS Nano ; 18(18): 11717-11731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651873

RESUMO

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.


Assuntos
Microscopia Crioeletrônica , Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Redes Neurais de Computação , Microscopia Eletrônica de Transmissão , Processamento de Imagem Assistida por Computador/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38191175

RESUMO

The tumor microenvironment (TME) is a complex ecosystem of both cellular and noncellular components that functions to impact the evolution of cancer. Various aspects of the TME have been targeted for the control of cancer; however, TME composition is dynamic, with the overall abundance of immune cells, endothelial cells (ECs), fibroblasts, and extracellular matrix (ECM) as well as subsets of TME components changing at different stages of progression and in response to therapy. To effectively treat cancer, an understanding of the functional role of the TME is needed. Genetically engineered mouse models have enabled comprehensive insight into the complex interactions within the TME ecosystem that regulate disease progression. Here, we review recent advances in mouse models that have been employed to understand how the TME regulates cancer initiation, progression, metastasis, and response to therapy.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Neoplasias , Microambiente Tumoral , Animais , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/imunologia , Humanos , Matriz Extracelular
5.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168235

RESUMO

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA