RESUMO
Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.
RESUMO
BACKGROUND: In the British Isles, it is generally accepted that the Eurasian badger (Meles meles) plays a role in the maintenance of bovine tuberculosis (bTB) in cattle. Non-selective culling is the main intervention method deployed in controlling bTB in badgers along with smaller scale Bacillus Calmette-Guérin (BCG) vaccination areas. This paper describes the use of selective badger culling combined with vaccination in a research intervention trial. METHODS: In Northern Ireland, a 100 km2 area was subjected to a test and vaccinate or remove (TVR) badger intervention over a 5-year period. Badgers were individually identified and tested on an annual basis. Physical characteristics and clinical samples were obtained from each unique badger capture event. RESULTS: A total of 824 badgers were trapped with 1520 capture/sampling events. There were no cage-related injuries to the majority of badgers (97%). A low level of badger removal was required (4.1%-16.4% annually), while 1412 BCG vaccinations were administered. A statistically significant downward trend in the proportion of test positive badgers was observed. CONCLUSION: This is the first project to clearly demonstrate the feasibility of cage side testing of badgers. The results provide valuable data on the logistics and resources required to undertake a TVR approach to control Mycobacterium bovis in badgers.
Assuntos
Doenças dos Bovinos , Mustelidae , Mycobacterium bovis , Tuberculose Bovina , Animais , Bovinos , Reservatórios de Doenças , Tuberculose Bovina/prevenção & controle , Reino Unido , Vacinação/veterináriaRESUMO
There are a paucity of data quantifying on-farm management practices such as the frequency of intraherd cattle movements, use of consolidated or spatially fragmented grazing pastures, and duration of time cattle spend at grass with respect to biosecurity and disease transmission. Such movement dynamics are important when attempting to understand the maintenance of chronic infectious disease, such as bovine tuberculosis (bTB). We captured empirical data on daily cattle movements for a sample of eighteen farms throughout one complete grazing season (n = 18,988 grazing days) and assessed these attributes in relation to herd bTB risk. Dairy herds were stocked at significantly higher densities compared to beef production systems (6.6 animals/ha, 95 % confidence intervals (CI) 6.5-6.7 and 4.1 animals/ha, 95 %CI 4.1 - 4.1 respectively, p < 0.001). Most notably milking cows, were grazed at higher densities than other life stages (e.g. calves, heifers and bullocks) (p < 0.001) and experienced four times the number of movements between pastures. Beef cattle were more likely to be grazed across multiple (rather than single) fields (p < 0.001), with greater time spent on fragmented land away from the main/home farm (p < 0.001). None of the farm or herd attributes analysed (e.g. stocking density, frequency of movement, movement distances or land fragmentation) were associated with herd bovine tuberculosis (bTB) breakdowns during this study. However, there was a weak positive association between bTB breakdowns during the 3 years prior to the study and cattle movement distances (p = 0.05) and time spent on fragmented land (p = 0.08). After a bTB breakdown occurs, restrictions on animals moving out of these herds are implemented to control disease spread, yet we argue that more attention is needed on the role of intraherd grazing patterns in modelling disease transmission risk between herds.
Assuntos
Criação de Animais Domésticos , Benchmarking/estatística & dados numéricos , Meios de Transporte , Tuberculose Bovina/transmissão , Animais , Bovinos , Indústria de Laticínios , Suscetibilidade a Doenças/veterinária , Feminino , Masculino , Irlanda do Norte , Fatores de RiscoRESUMO
Bovine tuberculosis (bTB) can be spread between and among cattle and wildlife hosts e.g. European badger (Meles meles). The majority of cattle in the UK and Ireland are grazed during the summer, potentially exposing them to Mycobacterium bovis. 18 farms were surveyed (39% dairy, 61% beef; fields n = 697) for one grazing season (May-November 2016, n = 148,461 field days) to quantify the co-occurrence of cattle with badger setts and latrines and adjacency to neighbouring cattle herds. 3% (n = 24) of the fields had a badger sett or latrine recorded, dairy cattle were significantly more likely to co-occur with badger setts and latrines than beef cattle. Most farms (89%) grazed cattle adjacent to a neighbouring herd, which accounted for 18% of the grazing season. Potential exposure to neighbouring herds did not differ between production systems but did vary between life stages. A significant positive association between the proportion of time cattle spent grazing fields with setts present and the historic 1-, 3- and 5- year bTB status (p = 0.007, p = 0.013 and p = 0.013 respectively) was found. However, when cattle were grazed in fields with latrines, a significant negative association was found between the proportion of time cattle spent grazing fields with latrines present and the historic 3- and 5- year bTB status (p = 0.033 and p = 0.012 respectively). Historic bTB status and percentage of days spent beside a neighbouring herd was unrelated. Idiosyncrasies at farm-level and between risk factors indicated that individual farm assessments would be beneficial to understand potential exposure risk.
Assuntos
Mustelidae , Tuberculose Bovina/transmissão , Animais , Animais Selvagens , Bovinos , Herbivoria , Irlanda , Mustelidae/microbiologia , Mycobacterium bovis , Fatores de Risco , Estações do Ano , Tuberculose Bovina/microbiologiaRESUMO
In Great Britain and Ireland, badgers (Meles meles) are a wildlife reservoir of Mycobacterium bovis and implicated in bovine tuberculosis transmission to domestic cattle. The route of disease transmission is unknown with direct, so-called "nose-to-nose," contact between hosts being extremely rare. Camera traps were deployed for 64,464 hr on 34 farms to quantify cattle and badger visitation rates in space and time at six farm locations. Badger presence never coincided with cattle presence at the same time, with badger and cattle detection at the same location but at different times being negatively correlated. Badgers were never recorded within farmyards during the present study. Badgers utilized cattle water troughs in fields, but detections were infrequent (equivalent to one badger observed drinking every 87 days). Cattle presence at badger-associated locations, for example, setts and latrines, were three times more frequent than badger presence at cattle-associated locations, for example, water troughs. Preventing cattle access to badger setts and latrines and restricting badger access to cattle water troughs may potentially reduce interspecific bTB transmission through reduced indirect contact.
RESUMO
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium's ability to degrade recalcitrant organics such as lignin.