Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 268(Pt B): 115840, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120158

RESUMO

The effect of plant roots in modifying Pb solubility and bioavailability in an historically contaminated orchard (Hudson) and a Pb phosphate-spiked (Arkport) soil was determined by measuring soluble Pb in the soil solutions as well as content of Pb in radish shoots grown in these soils. Soluble Pb and dissolved organic carbon (DOC) contents were greater in the rhizospheres of both Pb-contaminated soils than in the unplanted high-Pb soils. The rhizosphere effect increased soluble Pb 15-fold in the field-contaminated orchard soil, whereas the effect was much smaller in the Pb phosphate-spiked soil. The rhizosphere effect persisted in the Pb-phosphate spiked soil after adjustment of the soil pH from 7.8 to 6.7. The results indicate that Pb phosphate added to a non-acid soil has lower solubility than Pb in an orchard soil contaminated by historical Pb arsenate applications; nevertheless, some uptake of Pb into plant shoots resulted from both sources of soil Pb contamination. The rhizosphere effect was observed for trace metals in addition to Pb, with the solubility of Al, Fe, Cu and Ni all increasing in the rhizosphere soil. In contrast, the solubility of alkali and alkaline earth metals (K, Ca, Mg, Sr, Ba) all decreased in the rhizosphere soil. The results indicate that the rhizosphere effect associated with plant roots can raise the solubility of Pb in soils contaminated by legacy Pb and by insoluble Pb phosphate.


Assuntos
Rizosfera , Poluentes do Solo , Chumbo , Solo , Poluentes do Solo/análise , Solubilidade
2.
Int J Phytoremediation ; 18(12): 1178-86, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27216699

RESUMO

Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg(-1) Zn, 70 mg kg(-1) Cd and 10,000 mg kg(-1) S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.


Assuntos
Cádmio/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Enxofre/metabolismo , Zinco/metabolismo , Biodegradação Ambiental , Hidroponia , Folhas de Planta/metabolismo , Salix/crescimento & desenvolvimento , Especificidade da Espécie , Oligoelementos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-26949393

RESUMO

Transfer of Pb and As into vegetables grown in orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans and tomatoes were grown on soils containing a range of total Pb (16.5-915 mg/kg) and As (6.9-211 mg/kg) concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As content, pH, and vegetable species. Arsenic concentrations were highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards.

4.
J Hazard Mater ; 205-206: 144-9, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22240057

RESUMO

Long-term application of lead arsenate in orchards has led to a significant accumulation of Pb and As in the topsoil. Reclamation of old orchards for agricultural purposes entails the exposure of humans to Pb and As, which can be reduced by adequate remediation actions. In this study, we assessed the remediation efficiency of compost addition, commonly used as a sustainable agricultural practice, in decreasing the human exposure Pb and As by direct ingestion. The remediation was evaluated based on Pb and As bioavailability, assessed by means of a selective non-exhaustive chemical extraction (modified Morgan extraction, MME), with a physiologically based extraction test (PBET) for the assessment of Pb and As bioavailability in ingested soils and with a novel in vivo bioaccumulation test with isopods (Porcellio scaber). All the tests showed that compost addition consistently reduced Pb, but increased As potential bioavailability. The bioaccumulation test with P. scaber was sensitive to changes in Pb and As bioavailability in test soils. However, the results indicate that the bioavailability of As could be under- or overestimated using solely chemical extraction tests. Indirect assessment of trace metal bioavailability with bioaccumulation in isopods can be used as complementary source of data to the existing in vitro chemical extraction test approach for the estimation of human exposure to trace elements in polluted and remediated soil. This is the first report on the use of As accumulation in P. scaber as a tool for the assessment of As bioavailability in contaminated orchard soil.


Assuntos
Arsênio/metabolismo , Isópodes/metabolismo , Chumbo/metabolismo , Poluentes do Solo/metabolismo , Solo , Agricultura , Animais , Disponibilidade Biológica , Recuperação e Remediação Ambiental , Malus
5.
J Environ Qual ; 40(6): 1863-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22031569

RESUMO

Inductively coupled plasma emission spectrometry (ICP-OES) is the most common method for determination of soil Cd, yet spectral and matrix interferences affect measurements at the available analytical wavelengths for this metal. This study evaluated the severity of the interference over a range of total soil Cd by comparing ICP-OES and inductively coupled plasma mass spectrometry (ICP-MS) measurements of Cd in acid digests. Using the emission at 226.5 nm, ICP-OES was generally unable to quantify soil Cd at low (near-background) levels and gave unreliable values compared with ICP-MS. Using the line at 228.8 nm, a marked positive bias in Cd measurement (relative to the 226.5 nm measurement) was attributable to arsenic (As) interference even at soil As concentrations below 10 mg kg. This spectral interference in ICP-OES was severe in As-contaminated orchard soils, giving a false value for soil total Cd near 2 mg kg when soil As was 100 to 150 mg kg. In attempting to avoid these ICP emission-specific interferences, this study evaluated a method to estimate total soil Cd using 1 M HNO extraction followed by determination of Cd by flame atomic absorption (FAA), either with or without preconcentration of Cd using an Aliquat-heptanone extractant. The 1 M HNO extracted an average of 82% of total soil Cd. The FAA method had no significant interferences and estimated the total Cd concentrations in all soils tested with acceptable accuracy. For Cd-contaminated soils, the Aliquat-heptanone preconcentration step was not necessary, as FAA sensitivity was adequate for quantification of extractable soil Cd and reliable estimation of total soil Cd.


Assuntos
Cádmio/química , Poluentes do Solo/química , Solo/química , Análise Espectral/métodos
6.
Commun Soil Sci Plant Anal ; 42(13): 1581-1593, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-26893527

RESUMO

Lead (Pb) is frequently present in urban soils at concentrations of concern for human health. Regulations for this metal are based on total soil concentrations as determined by acid digestion, but a less expensive screening test for Pb would be useful in facilitating more thorough soil testing of urban areas if it could be shown to correlate strongly to total soil Pb. In this study, three extractants (0.1 M citrate, Modified Morgan, 1 M nitric acid) were evaluated for their ability to estimate the total Pb in contaminated soils. Nitric acid not only extracted a greater fraction of total soil Pb, but also produced the strongest correlation to total Pb and is concluded to be the superior extractant for a soil Pb screening test. As the spatial distribution of Pb was observed in selected soils to be highly heterogeneous on the micron scale, thorough soil homogenization prior to testing is recommended.

7.
Environ Sci Technol ; 39(23): 9223-8, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16382946

RESUMO

Glyphosate (N-(phosphonomethyl)glycine), the most commonly used herbicide worldwide, degrades relatively rapidly in soils under most conditions, presumably by microbial processes. The most frequently detected degradation product in soil and water is AMPA (aminomethylphosphonic acid). We report the first evidence for an abiotic pathway of glyphosate and AMPA degradation under environmentally realistic conditions. Both glyphosate and AMPA degraded at 20 degrees C in dilute aqueous suspensions of birnessite, a manganese oxide common in soils, as evidenced by the accumulation of orthophosphate in solution over a period of several days. It is concluded that the abiotic degradation involved C-P bond cleavage at the Mn oxide surface, although evidence for C-N bond cleavage in the case of glyphosate and sarcosine, a likely degradation product of glyphosate, was found. The degradation of glyphosate was faster than that of AMPA, and higher temperature (50 degrees C) resulted in faster degradation of both glyphosate and AMPA. The addition of sulfate to the solution had no marked effect on the reaction rate, although Cu2+ addition inhibited degradation. As this metal ion complexes strongly with glyphosate, the inhibition can be attributed to the ability of Cu2+ to limit glyphosate coordination to reactive oxidation sites at the Mn oxide surface. Using a similar experimental design, we were unable to detect glyphosate degradation in an equimolar solution of MnCl2 (0.5 mM). However, we demonstrated that the oxidation of Mn2+ is enhanced both in solution and on an inert surface, in the presence of glyphosate (4:1 Mn-glyphosate molar ratio). This result suggests that the oxidative breakdown of glyphosate in the presence of Mn2+ may ultimately occur following the spontaneous oxygen-mediated oxidation of manganese.


Assuntos
Glicina/análogos & derivados , Compostos de Manganês/química , Organofosfonatos/química , Óxidos/química , Glicina/química , Isoxazóis , Oxirredução , Tetrazóis , Glifosato
8.
Environ Toxicol Chem ; 20(1): 122-6, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11351398

RESUMO

Coprecipitates of heavy metals with Fe oxides may form in contaminated soil, water, and sediment systems, particularly when oxidation-reduction processes are occurring. Once formed, coprecipitates with ferrihydrite could limit heavy metal mobility, solubility, toxicity, and bioavailability in geochemical systems. In this study, Cd, Cu, Pb, and Zn were coprecipitated with Fe by titration to pHs 6 and 7. Metal solubility was monitored during the coprecipitation process to pH 7 and after aging of the product. In the coprecipitate formed at pH 6, metal solubility was determined after the system reached pH 6 and at subsequent time intervals. We also reacted the coprecipitates with citrate and evaluated potential metal availability at increased aging times. The pH of coprecipitate formation had little effect on the long-term solubility of Cu and Zn, whereas soluble Cd was greater in the coprecipitate formed at pH 6. Soluble percentages of metals were low at both pH 6 and 7 for Cu and Pb but averaged 1.5 to 3% for Zn and greater than 40% for Cd. Hysteresis was observed in the coprecipitation curves for Zn and Cd, revealing reduced solubility after adsorption or coprecipitation. Lead and Cu failed to show hysteresis, with strong retention in the solid phase at pH greater than 6. The citrate-extractable fraction was greatest for Cd and Zn, less for Cu, and least for Pb. Citrate-extractable metal was higher for the coprecipitate formed at pH 7 than at pH 6, suggesting increased potential availability from coprecipitates formed at higher pH.


Assuntos
Compostos Férricos/química , Metais Pesados/química , Citratos/química , Concentração de Íons de Hidrogênio , Hidrólise , Solubilidade
9.
Environ Sci Technol ; 35(5): 908-16, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11351534

RESUMO

Soils are biogeochemical systems under continual modification by biological and chemical processes. Trace element solid-solution partitioning is thus influenced by long-term changes to these solid phases. We study Pb, Cd, Zn, and Cu solution speciation and solid-phase dynamics in two soils of volcanic origin (Te Akatea and Egmont, high in noncrystalline aluminosilicates), an oxisol from Brazil (Oxisol, high in oxides of Al and Fe), and several sludge-treated soils (labeled NYS soils, high in organic materials). Total soluble (by ICP) and labile (by ASV) concentrations of Pb, Cd, Zn, and Cu were determined after incubation of the soils for about 1.5 yr at room (23 degrees C) and elevated (70 degrees C) temperatures. Changes occurring to the solid phases were monitored by FTIR and extraction with oxalate and pyrophosphate. It is shown that induced hydrolysis or decomposition of organic materials in soils results in increases in both labile and total soluble concentrations of Pb, Cd, Cu, and Zn in solution. Labile and total soluble concentrations of Cu and Zn increase concomitantly with dissolved organic carbon (DOC); the nonlabile soluble fraction also increases with increasing DOC. Similarly, the concentration of Cd and Pb in solution increases with increasing DOC; however, most soluble Cd and Pb is asv-labile. Only in the Egmont soil (mineralogy dominated by proto-imogolite allophane) was reduced Pb solubility observed after prolonged equilibration and heating. Lead solubility increased after partial crystallization of amorphous minerals in the Te Akatea and the Oxisol. Thus, for most of the metal-soil systems studied, prolonged thermal treatment at 70 degrees C increased total soluble and asv-labile metals, suggesting that aging effects on metals in contaminated soils could release metals to labile forms in some cases.


Assuntos
Metais Pesados/química , Poluentes do Solo/análise , Compostos Orgânicos , Solubilidade , Temperatura
10.
J Environ Qual ; 30(1): 78-84, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11215669

RESUMO

Copper phytotoxicity in soils is difficult to assess because Cu accumulates at and damages roots, and is not readily transferred to shoots. Soil chemical properties strongly influence Cu speciation, so that total soil Cu alone is not a broadly useful indicator of potential toxicity to plants. The present study measured free Cu2+ activity in Cu-enriched peat soils using the ion selective electrode. The soil Cu2+ activity was related to the severity of phytotoxicity as measured by several indicators in a maize (Zea mays L.) bioassay, including leaf chlorosis, root stunting, and reduced shoot growth and Fe concentration. A soil Cu2+ activity of 10(-7.0) to 10(-7.5), corresponding to total Cu of about 275 mg/kg in the peat soil, caused phytotoxicity in maize seedlings. It is proposed that Cu2+ activity is more directly related to phytotoxic effects than other soil tests, such as extractions with strong acids or chelating agents, because it is the free Cu2+ in soil solution that has the most direct toxic effects on roots. There was very limited uptake of Cu into maize shoots, and even when Cu2+ activity and total soil Cu were raised into the extreme toxicity range of 10(-5) and 4,000 mg/ kg, respectively, shoot Cu remained less than 35 mg/kg. These results indicate the inadequacy of the USEPA risk assessment of potential for Cu toxicity to crops amended with sewage sludge, which assumed a no-effect level of maize shoot Cu of 40 mg/kg.


Assuntos
Cobre/química , Esgotos , Zea mays/fisiologia , Agricultura , Cobre/toxicidade , Relação Dose-Resposta a Droga , Íons , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Medição de Risco , Testes de Toxicidade
11.
Environ Pollut ; 109(2): 327-46, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15092904

RESUMO

The effect of sludge processing (digested dewatered, pelletized, alkaline-stabilized, composted, and incinerated), soil type and initial soil pH on trace metal mobility was examined using undisturbed soil columns. Soils tested were Hudson silt loam (Glossaquic Hapludalf) and Arkport fine sandy loam (Lamellic Hapludalf), at initial pH levels of 5 and 7. Sludges were applied during four accelerated cropping cycles (215 tons/ha cumulative application for dewatered sludge; equivalent rates for other sludges), followed by four post-application cycles. Also examined (with no sludge applications) were Hudson soil columns from a field site that received a heavy loading of sludge in 1978. Romaine (Lactuca sativa) and oats (Avena sativa) were planted in alternate cycles, with oats later replaced by red clover (Trifolium pratense). Soil columns were watered with synthetic acid rainwater, and percolates were analyzed for trace metals (ICP spectroscopy), electrical conductivity and pH. Percolate metal concentrations varied with sludge and soil treatments. Composted sludge and ash had the lowest overall metal mobilities. Dewatered and pelletized sludge had notable leaching of Ni, Cd and Zn in Arkport soils, especially at low pH. Alkaline-stabilized sludge had the widest range of percolate metals (relatively insensitive to soils) including Cu, Ni, B and Mo. Old site column percolate concentrations showed good agreement with previous field data. Little leaching of P was observed in all cases. Cumulative percolate metal losses for all treatments were low relative to total applied metals. Leachate and soil pH were substantially depressed in dewatered and pelletized sludge soil columns and increased for alkaline-stabilized and ash treatments.

12.
Sci Total Environ ; 227(1): 13-28, 1999 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-10209879

RESUMO

Soil samples were collected at 15-cm increments to a depth of 75 cm from plots on a silt loam soil where until several years earlier and for 14 years, anaerobically digested sewage sludge had been annually applied by furrow irrigation. The study protocol consisted of four replications of 6.1 x 12.2-m plots with 0 (T0), 1/4-maximum (T1), 1/2-maximum (T2) and maximum (T3) sludge application rates randomized within blocks. When sludge applications were terminated, maximum sludge-treated plots had received 765 Mg ha-1 (dry weight equivalent) of sludge solids. Total soil concentrations of Cd, Cr, Cu, Ni, Pb and Zn had been significantly enhanced by all sludge application rates to a soil depth of 30 cm. Below the 30-cm depth, total soil Cd was increased to 75 cm, total Zn to 45 cm (T2 and T3 only), total Cr to 60 cm (T2 and T3 only), but total Cu, Pb, and Ni were not increased at depth. Despite the lack of significant increases in subsoil concentrations for some metals, mass balance calculations showed a relatively high proportion of all the above sludge-borne heavy metals to be unaccounted for in the soil profile for each application rate. Mass balance calculations of losses ranged from a high of 60% for Ni to a low of 36% for Cu and Pb. Similar losses were calculated from metal concentrations measured in soil samples taken at the time the sludge was applied. In soil surface samples (0-15 cm) from maximum sludge-treated plots, percentages of total metal concentration extracted with 4.0 M HNO3 ranged from a low of 31 for Zn to a high of 75 for Cu. Efficiency of metal extraction by HNO3 was inconsistent, depending on the soil horizon and sludge treatment, so that evaluation of HNO3-extractable metals is not a reliable method of estimating total metal retention in the profiles. In soil surface samples from maximum sludge-treated plots, the percentage of total metal contents extracted with DTPA ranged from a low of 0.03 for Cr to a high of 59 for Cd. The DTPA extractable levels of Cu, Ni, and Pb were higher in the subsoils of the sludge-treated soils, indicating that these metals had been redistributed from the surface layer to deeper zones in the profile of sludge-amended soil, despite the absence of elevated total concentrations of these three metals in the deeper subsoil.


Assuntos
Esgotos/análise , Poluentes do Solo/análise , Oligoelementos/análise , Metais Pesados/análise , Ácido Pentético , Fatores de Tempo
13.
Pediatr Nephrol ; 12(5): 357-64, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9686952

RESUMO

We studied 34 apparently healthy children and 2 propositi from kindreds with familial juvenile hyperuricaemic nephropathy (FJHN) - a disorder characterised by early onset, hyperuricaemia, gout, familial renal disease and a similarly low urate clearance relative to glomerular filtration rate (GFR) [fractional excretion of uric acid (FEur) 5.1+/-1.6%] in young men and women. In addition to the propositi, 17 asymptomatic children were hyperuricaemic -- mean plasma urate (368+/-30 micromol/l), twice that of controls (154+/-41 micromol/l). Eight of them had a normal GFR ( > 80 ml/min per 1.73 m2), and 11 renal dysfunction, which was severe in 5. The FEur in the 14 hyperuricaemic children with a GFR > 50 ml/min was 5.0+/-0.5% and in the 5 with a GFR < or =50 ml/min was still low (11.5+/-0.2%) compared with controls (18.4+/-5.1%). The 17 normouricaemic children (185+/-37 micromol/l) had a normal GFR (>80 ml/min) and FEur (14.0+/-5.3%). The results highlight the dominant inheritance, absence of the usual child/adult difference in FEur in FJHN and presence of hyperuricaemia without renal disease in 42% of affected children, but not vice versa. Since early allopurinol treatment may retard progression to end-stage renal failure, screening of all relatives in FJHN kindreds is essential.


Assuntos
Nefropatias/diagnóstico , Falência Renal Crônica/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Gota/diagnóstico , Gota/genética , Gota/metabolismo , Gota/fisiopatologia , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Falência Renal Crônica/genética , Falência Renal Crônica/metabolismo , Falência Renal Crônica/fisiopatologia , Masculino , Linhagem , Ácido Úrico/metabolismo
16.
Environ Pollut ; 99(3): 365-77, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-15093301

RESUMO

This study was undertaken to determine the present distribution and mobility of sludge-applied metals at an old land application site. Trace metals concentrations were determined for soils (using 4 M HNO3 extracts), soil leachates (collected with passive wick lysimeters over a 2.5-year period), and plant tissue from a field site which received a heavy loading of wastewater sludge in 1978 and an adjacent control plot. Blue dye was used to indicate preferential percolate flowpaths in the sludge plot soil for sampling and comparison with bulk soil metals concentrations. After nearly 20 years, metals in the sludge plot leachate were found at significantly greater concentrations than in the control plot, exceeding drinking water standards for Cd, Ni, Zn, and B. Annual metals fluxes were only a fraction of the current soil metal contents, and do not account for the apparent substantial past metals losses determined in a related study. Elevated Cd, Cu, and Ni levels were found in grass growing on the sludge plot. Despite heavy loadings, fine soil texture (silty clay loam) and evidence of past and ongoing metals leaching, examination of the bulk subsoil indicated no statistically significant increases in metals concentrations (even in a calcareous subsoil horizon with elevated pH) when comparing pooled sludge plot soil profiles with controls. Sampling of dyed preferential flow paths in the sludge plot detected only slight increases in several metals. Preferential flow and metal complexation with soluble organics apparently allow leaching without easily detectable readsorption in the subsoil. The lack of significant metal deposition in subsoil may not be reliable evidence for immobility of sludge-applied metals.

18.
J Inherit Metab Dis ; 20(2): 214-26, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9211194

RESUMO

When to suspect and thus investigate for inborn errors of purine and pyrimidine metabolism is a dilemma for even the most observant investigator. Often parents of affected children, or a history involving siblings, can provide valuable clues. The recognition of new purine and pyrimidine disorders requires skill and serendipity. But even identifying known disorders can prove difficult, since they cover a broad spectrum of illnesses, can have more than one symptom, or lead to early death. This problem is compounded by the fact that they are relatively recently described and therefore often little known, either in the clinic or laboratory. The considerable heterogeneity in clinical expression within families as well as between families means that asymptomatic homozygotes may not be recognized or can present at any time from early childhood through adolescence up to their eighth decade. Consequently, all siblings should be screened. These disorders should be suspected in any case of unexplained anaemia, failure to thrive, susceptibility to recurrent infection, or neurological deficits with no current diagnosis, including autism, cerebral palsy, delayed development, deafness, epilepsy, self-mutilation, muscle weakness, the inability to walk or talk, and-unusual in children and adolescents-gout, sometimes with renal disease. Some disorders present with radiolucent kidney stones, in acute or chronic renal failure, alone or with any of the above, or as an intolerance/sensitivity to therapy (e.g. 5-fluorouracil in malignancies or azathioprine immunosuppression in organ transplantation), often with life-threatening consequences. Several parameters need to be evaluated to ensure correct diagnosis. Pitfalls which can mask diagnosis using only a single test are renal failure, blood transfusion, diet or drugs.


Assuntos
Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Purinas/metabolismo , Pirimidinas/metabolismo , Biomarcadores , Humanos , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo
19.
Environ Pollut ; 94(2): 153-7, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-15093501

RESUMO

Copper tissue concentrations of radish (Raphanus sativa cv. Cherry Belle), lettuce (Lactuca sativa cv. Buttercrunch) and ryegrass (Lolium perenne cv. Barmultra) grown in a greenhouse in urban contaminated soils are compared to total, soluble and free ion copper pools. The tissue concentrations of copper vary between 8.1 and 82.6 mg Cu kg(-1) dry tissue and the total soil copper content varies between 32 and 640 mg Cu kg(-1) dry soil. The linear regressions with cupric ion activity and total soil copper are both significant (p < 0.01), but cupric ion activity yields a higher level of statistical significance in every case. The results support the hypothesis that free metal in the soil solution is a better indicator of plant metal bioavailability than either total or soluble metal.

20.
Clin Chim Acta ; 238(2): 169-78, 1995 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-7586576

RESUMO

The activity of inosine monophosphate dehydrogenase (IMPDH: EC 1.2.1.14) was measured in erythrocyte lysates using a non-radiolabelled method linked to reversed-phase liquid chromatography (RPLC). The mean activity in erythrocytes from healthy controls using this sensitive method was extremely low (mean 85 pmol/h per mg protein, range 4-183). The elevated erythrocyte IMPDH activity reported previously in hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency was confirmed (mean 234 pmol/h per mg protein). Erythrocyte IMPDH activity of patients with other disorders of purine metabolism, or with leukaemias and lymphomas, showed no marked difference from controls, except in one instance--an immunodeficient child with purine nucleoside phosphorylase (PNP) deficiency, treated with Ribavirin, where a 30-fold increase in activity was found (2670 pmol/h per mg protein). Investigation of erythrocyte IMPDH in other immunodeficient children with normal PNP activity demonstrated that this grossly elevated erythrocyte activity was attributable to induction of IMPDH by Ribavirin therapy.


Assuntos
Antimetabólitos/farmacologia , Eritrócitos/enzimologia , IMP Desidrogenase/biossíntese , Ribavirina/farmacologia , Criança , Cromatografia Líquida de Alta Pressão , Humanos , Hipoxantina Fosforribosiltransferase/deficiência , IMP Desidrogenase/sangue , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/enzimologia , Leucemia/sangue , Leucemia/enzimologia , Linfoma/sangue , Linfoma/enzimologia , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA