Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cardiovasc Res ; 119(16): 2663-2671, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37433039

RESUMO

AIMS: Myocardial infarction (MI) is a major cause of death worldwide. Effective treatments are required to improve recovery of cardiac function following MI, with the aim of improving patient outcomes and preventing progression to heart failure. The perfused but hypocontractile region bordering an infarct is functionally distinct from the remote surviving myocardium and is a determinant of adverse remodelling and cardiac contractility. Expression of the transcription factor RUNX1 is increased in the border zone 1-day after MI, suggesting potential for targeted therapeutic intervention. OBJECTIVE: This study sought to investigate whether an increase in RUNX1 in the border zone can be therapeutically targeted to preserve contractility following MI. METHODS AND RESULTS: In this work we demonstrate that Runx1 drives reductions in cardiomyocyte contractility, calcium handling, mitochondrial density, and expression of genes important for oxidative phosphorylation. Both tamoxifen-inducible Runx1-deficient and essential co-factor common ß subunit (Cbfß)-deficient cardiomyocyte-specific mouse models demonstrated that antagonizing RUNX1 function preserves the expression of genes important for oxidative phosphorylation following MI. Antagonizing RUNX1 expression via short-hairpin RNA interference preserved contractile function following MI. Equivalent effects were obtained with a small molecule inhibitor (Ro5-3335) that reduces RUNX1 function by blocking its interaction with CBFß. CONCLUSIONS: Our results confirm the translational potential of RUNX1 as a novel therapeutic target in MI, with wider opportunities for use across a range of cardiac diseases where RUNX1 drives adverse cardiac remodelling.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/prevenção & controle , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular
2.
Hypertension ; 79(11): 2419-2429, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36378920

RESUMO

The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Uromodulina/genética , Uromodulina/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Pressão Sanguínea/fisiologia , Rim/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética
3.
Physiol Genomics ; 53(4): 160-171, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33719581

RESUMO

During pregnancy, the uterine spiral arteries undergo major vascular remodeling to ensure sufficient uteroplacental perfusion to support the fetus. In pregnancies complicated by hypertensive disorders, this remodeling is deficient leading to impaired uteroplacental blood flow and poor maternal and fetal outcomes. The underlying genetic mechanisms for failed vascular remodeling are not fully understood. This study aimed to examine the early-pregnancy-associated gene changes in the uterine arteries of spontaneously hypertensive stroke-prone rats (SHRSP) compared with their normotensive counterparts, Wistar-Kyoto rats (WKY). Uterine arteries from gestational day 6.5 WKY and SHRSP were processed for RNA-sequencing, along with virgin, age-matched controls for each strain. Gene expression changes were identified and biological pathways were implicated and interpretated using ingenuity pathway analysis (IPA). This study found that WKY uterine arteries from early pregnancy exhibit a gene expression pattern that is suggestive of a pregnancy-dependent reduction in Ca2+ handling and renin-angiotensin-aldosterone system (RAAS) components and an increase in ATP production. In contrast, the expression pattern of pregnant SHRSP uterine arteries was dominated by an elevated immune response and increased production of reactive oxygen species (ROS) and downstream effectors of the RAAS. These results suggest that in a rat model, hypertension during pregnancy impacts uterine artery gene expression patterns as early as the first week of pregnancy. The pathway changes involved may underlie or contribute to the adverse vascular remodeling and resultant placental ischemia and systemic vascular dysfunction observed in SHRSP in late gestation.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Feminino , Placenta/metabolismo , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/etiologia , Transcriptoma/genética , Artéria Uterina/metabolismo
4.
Clin Sci (Lond) ; 134(8): 1001-1025, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32337535

RESUMO

Placental microRNAs (miRNAs) regulate the placental transcriptome and play a pathological role in preeclampsia (PE), a hypertensive disorder of pregnancy. Three PE rodent model studies explored the role of placental miRNAs, miR-210, miR-126, and miR-148/152 respectively, by examining expression of the miRNAs, their inducers, and potential gene targets. This review evaluates the role of miR-210, miR-126, and miR-148/152 in PE by comparing findings from the three rodent model studies with in vitro studies, other animal models, and preeclamptic patients to provide comprehensive insight into genetic components and pathological processes in the placenta contributing to PE. The majority of studies demonstrate miR-210 is upregulated in PE in part driven by HIF-1α and NF-κBp50, stimulated by hypoxia and/or immune-mediated processes. Elevated miR-210 may contribute to PE via inhibiting anti-inflammatory Th2-cytokines. Studies report an up- and downregulation of miR-126, arguably reflecting differences in expression between cell types and its multifunctional capacity. MiR-126 may play a pro-angiogenic role by mediating the PI3K-Akt pathway. Most studies report miR-148/152 family members are upregulated in PE. Evidence suggests they may inhibit DNA methylation of genes involved in metabolic and inflammatory pathways. Given the genetic heterogeneity of PE, it is unlikely that a single placental miRNA is a suitable therapeutic target for all patients. Investigating miRNAs in PE subtypes in patients and animal models may represent a more appropriate approach going forward. Developing methods for targeting placental miRNAs and specific placental cell types remains crucial for research seeking to target placental miRNAs as a novel treatment for PE.


Assuntos
MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , MicroRNAs/genética , Pré-Eclâmpsia/genética , Gravidez
5.
J Hypertens ; 37(5): 985-996, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30308595

RESUMO

BACKGROUND: Combined congenic breeding and microarray gene expression profiling previously identified glutathione S-transferase µ-type 1 (Gstm1) as a positional and functional candidate gene for blood pressure (BP) regulation in the stroke-prone spontaneously hypertensive (SHRSP) rat. Renal Gstm1 expression in SHRSP rats is significantly reduced when compared with normotensive Wistar Kyoto (WKY) rats. As Gstm1 plays an important role in the secondary defence against oxidative stress, significantly lower expression levels may be functionally relevant in the development of hypertension. The aim of this study was to investigate the role of Gstm1 in BP regulation and oxidative stress by transgenic overexpression of the Gstm1 gene. METHOD: Two independent Gstm1 transgenic SHRSP lines were generated by microinjecting SHRSP embryos with a linear construct controlled by the EF-1α promoter encoding WKY Gstm1 cDNA [SHRSP-Tg(Gstm1)1 and SHRSP-Tg(Gstm1)2]. RESULTS: Transgenic rats exhibit significantly reduced BP and pulse pressure when compared with SHRSP [systolic: SHRSP 205.2 ±â€Š3.7 mmHg vs. SHRSP-Tg(Gstm1)1 175.5 ±â€Š1.6 mmHg and SHRSP-Tg(Gstm1)2 172 ±â€Š3.2 mmHg, P < 0.001; pulse pressure: SHRSP 58.4 ±â€Š0.73 mmHg vs. SHRSP-Tg(Gstm1)1 52.7 ±â€Š0.19 mmHg and SHRSP-Tg(Gstm1)2 40.7 ±â€Š0.53 mmHg, P < 0.001]. Total renal and aortic Gstm1 expression in transgenic animals was significantly increased compared with SHRSP [renal relative quantification (RQ): SHRSP-Tg(Gstm1)1 1.95 vs. SHRSP 1.0, P < 0.01; aorta RQ: SHRSP-Tg(Gstm1)1 2.8 vs. SHRSP 1.0, P < 0.05]. Renal lipid peroxidation (malondialdehyde: protein) and oxidized : reduced glutathione ratio levels were significantly reduced in both transgenic lines when compared with SHRSP [malondialdehyde: SHRSP 0.04 ±â€Š0.009 µmol/l vs. SHRSP-Tg(Gstm1)1 0.024 ±â€Š0.002 µmol/l and SHRSP-Tg(Gstm1)2 0.021 ±â€Š0.002 µmol/l; (oxidized : reduced glutathione ratio): SHRSP 5.19 ±â€Š2.26 µmol/l vs. SHRSP-Tg(Gstm1)1 0.17 ±â€Š0.11 µmol/l and SHRSP-Tg(Gstm1)2 0.47 ±â€Š0.22 µmol/l]. Transgenic SHRSP rats containing the WKY Gstm1 gene demonstrate significantly lower BP, reduced oxidative stress and improved levels of renal Gstm1 expression. CONCLUSION: These data support the hypothesis that reduced renal Gstm1 plays a role in the development of hypertension.


Assuntos
Pressão Sanguínea/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Hipertensão/genética , Estresse Oxidativo/genética , Animais , Animais Geneticamente Modificados , Aorta/metabolismo , Glutationa/metabolismo , Hipertensão/fisiopatologia , Rim/metabolismo , Peroxidação de Lipídeos , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Transgênicos , Sístole
6.
Physiol Genomics ; 50(11): 964-972, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216136

RESUMO

Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.


Assuntos
Resposta ao Choque Térmico/genética , Túbulos Renais/fisiologia , Estresse Salino/genética , Uromodulina/genética , Animais , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Alça do Néfron/fisiologia , Masculino , Camundongos Mutantes , Regulação para Cima
7.
Hypertension ; 72(1): 208-218, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29844145

RESUMO

Hypertensive disorders of pregnancy are the second leading cause of maternal deaths worldwide. Superimposed preeclampsia is an increasingly common problem and often associated with impaired placental perfusion. Understanding the underlying mechanisms and developing treatment options are crucial. The pregnant stroke-prone spontaneously hypertensive rat has impaired uteroplacental blood flow and abnormal uterine artery remodeling. We used Ang II (angiotensin II) infusion in pregnant stroke-prone spontaneously hypertensive rats to mimic the increased cardiovascular stress associated with superimposed preeclampsia and examine the impact on the maternal cardiovascular system and fetal development. Continuous infusion of Ang II at 500 or 1000 ng/kg per minute was administered from gestational day 10.5 until term. Radiotelemetry and echocardiography were used to monitor hemodynamic and cardiovascular changes, and urine was collected prepregnancy and throughout gestation. Uterine artery myography assessed uteroplacental vascular function and structure. Fetal measurements were made at gestational day 18.5, and placentas were collected for histological and gene expression analyses. The 1000 ng/kg per minute Ang II treatment significantly increased blood pressure (P<0.01), reduced cardiac output (P<0.05), and reduced diameter and increased stiffness of the uterine arteries (P<0.01) during pregnancy. The albumin:creatinine ratio was increased in both Ang II treatment groups (P<0.05; P<0.0001). The 1000 ng/kg per minute-treated fetuses were significantly smaller than vehicle treatment (P<0.001). Placental expression of Ang II receptors was increased in the junctional zone in 1000 ng/kg per minute Ang II-treated groups (P<0.05), with this zone showing depletion of glycogen content and structural abnormalities. Ang II infusion in pregnant stroke-prone spontaneously hypertensive rats mirrors hemodynamic, cardiac, and urinary profiles observed in preeclamptic women, with evidence of impaired fetal growth.


Assuntos
Angiotensina II/toxicidade , Pressão Sanguínea/fisiologia , Pré-Eclâmpsia/induzido quimicamente , Prenhez , Artéria Uterina/fisiopatologia , Vasoconstrição/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Infusões Intravenosas , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artéria Uterina/efeitos dos fármacos
8.
Clin Sci (Lond) ; 132(12): 1315-1328, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29632138

RESUMO

BACKGROUND: The effect of salt on cerebral small vessel disease (SVD) is poorly understood. We assessed the effect of dietary salt on cerebral tissue of the stroke-prone spontaneously hypertensive rat (SHRSP) - a relevant model of sporadic SVD - at both the gene and protein level. Methods: Brains from 21-week-old SHRSP and Wistar-Kyoto rats, half additionally salt-loaded (via a 3-week regime of 1% NaCl in drinking water), were split into two hemispheres and sectioned coronally - one hemisphere for mRNA microarray and qRT-PCR, the other for immunohistochemistry using a panel of antibodies targeting components of the neurovascular unit. Results: We observed differences in gene and protein expression affecting the acute phase pathway and oxidative stress (ALB, AMBP, APOH, AHSG and LOC100129193, up-regulated in salt-loaded WKY versus WKY, >2-fold), active microglia (increased Iba-1 protein expression in salt-loaded SHRSP versus salt-loaded WKY, p<0.05), vascular structure (ACTB and CTNNB, up-regulated in salt-loaded SHRSP versus SHRSP, >3-fold; CLDN-11, VEGF and VGF down-regulated >2-fold in salt-loaded SHRSP versus SHRSP) and myelin integrity (MBP down-regulated in salt loaded WKY rats versus WKY, >2.5-fold). Changes of salt-loading were more pronounced in SHRSP and occurred without an increase in blood pressure in WKY rats. CONCLUSION: Salt exposure induced changes in gene and protein expression in an experimental model of SVD and its parent rat strain in multiple pathways involving components of the glio-vascular unit. Further studies in pertinent experimental models at different ages would help clarify the short- and long-term effect of dietary salt in SVD.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Estresse Oxidativo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Regulação para Cima/efeitos dos fármacos
9.
Circulation ; 137(1): 57-70, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030345

RESUMO

BACKGROUND: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Coelhos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo
10.
Physiol Genomics ; 49(3): 193-200, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130428

RESUMO

Preeclampsia is a multisystem disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 wk of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 336 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. While general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30- ± 0.9-fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88- ± 2.24-fold change). We have identified that HLA-A is upregulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is upregulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia.


Assuntos
Regulação da Expressão Gênica , Antígenos HLA/genética , Placenta/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Adulto , Feminino , Antígenos HLA/metabolismo , Humanos , Gravidez , Transcriptoma , Regulação para Cima/genética
11.
J Hypertens ; 35(2): 319-329, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27755386

RESUMO

BACKGROUND: We have previously confirmed the importance of rat chromosome 3 (RNO3) genetic loci on blood pressure elevation, pulse pressure (PP) variability and renal pathology during salt challenge in the stroke-prone spontaneously hypertensive (SHRSP) rat. The aims of this study were to generate a panel of RNO3 congenic sub-strains to genetically dissect the implicated loci and identify positional candidate genes by microarray expression profiling and analysis of next-generation sequencing data. METHOD AND RESULTS: A panel of congenic sub-strains were generated containing Wistar-Kyoto (WKY)-introgressed segments of varying size on the SHRSP genetic background, focused within the first 50 Mbp of RNO3. Haemodynamic profiling during salt challenge demonstrated significantly reduced systolic blood pressure, diastolic blood pressure and PP variability in SP.WKYGla3a, SP.WKYGla3c, SP.WKYGla3d and SP.WKYGla3e sub-strains. Only SBP and DBP were significantly reduced during salt challenge in SP.WKYGla3b and SP.WKYGla3f sub-strains, whereas SP.WKYGla3g rats did not differ in haemodynamic response to SHRSP. Those sub-strains demonstrating significantly reduced PP variability during salt challenge also demonstrated significantly reduced renal pathology and proteinuria. Microarray expression profiling prioritized two candidate genes for blood pressure regulation (Dnm1, Tor1b), localized within the common congenic interval shared by SP.WKYGla3d and SP.WKYGla3f strains, and one candidate gene for salt-induced PP variability and renal pathology (Rabgap1), located within the region unique to the SP.WKYGla3d strain. Comparison of next-generation sequencing data identified variants within additional positional genes that are likely to affect protein function. CONCLUSION: This study has identified distinct intervals on RNO3-containing genes that may be important for blood pressure regulation and renal pathology during salt challenge.


Assuntos
Pressão Sanguínea/genética , Dinamina I/genética , Hipertensão/genética , Chaperonas Moleculares/genética , Locos de Características Quantitativas , Animais , Animais Congênicos , Mapeamento Cromossômico , Cromossomos de Mamíferos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipertensão/patologia , Rim/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Análise de Sequência de DNA , Cloreto de Sódio na Dieta/administração & dosagem , Acidente Vascular Cerebral/patologia
12.
Circulation ; 133(21): 2050-65, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27052414

RESUMO

BACKGROUND: Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. METHODS AND RESULTS: Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle-induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. CONCLUSIONS: These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies.


Assuntos
Proliferação de Células/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , RNA Longo não Codificante/fisiologia , Proteínas de Caenorhabditis elegans , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Músculo Liso Vascular/citologia , Veia Safena/citologia , Veia Safena/fisiologia
13.
Physiol Genomics ; 48(3): 202-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26757800

RESUMO

Recombinant human erythropoietin (rHuEPO) is frequently abused by athletes as a performance-enhancing drug, despite being prohibited by the World Anti-Doping Agency. Although the methods to detect blood doping, including rHuEPO injections, have improved in recent years, they remain imperfect. In a proof-of-principle study, we identified, replicated, and validated the whole blood transcriptional signature of rHuEPO in endurance-trained Caucasian males at sea level (n = 18) and Kenyan endurance runners at moderate altitude (n = 20), all of whom received rHuEPO injections for 4 wk. Transcriptional profiling shows that hundreds of transcripts were altered by rHuEPO in both cohorts. The main regulated expression pattern, observed in all participants, was characterized by a "rebound" effect with a profound upregulation during rHuEPO and a subsequent downregulation up to 4 wk postadministration. The functions of the identified genes were mainly related to the functional and structural properties of the red blood cell. Of the genes identified to be differentially expressed during and post-rHuEPO, we further confirmed a whole blood 34-transcript signature that can distinguish between samples collected pre-, during, and post-rHuEPO administration. By providing biomarkers that can reveal rHuEPO use, our findings represent an advance in the development of new methods for the detection of blood doping.


Assuntos
Dopagem Esportivo/prevenção & controle , Eritropoetina/sangue , Eritropoetina/genética , Proteínas Recombinantes/sangue , Proteínas Recombinantes/genética , Adulto , Eritropoetina/administração & dosagem , Eritropoetina/biossíntese , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/biossíntese , Transcrição Gênica
14.
J Hypertens ; 33(10): 2068-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213997

RESUMO

OBJECTIVES: Preeclampsia is a multisystem disease that significantly contributes to maternal and foetal morbidity and mortality. In this study, we used a nonbiased microarray approach to identify novel circulating miRNAs in maternal plasma that may be associated with preeclampsia. METHODS: Plasma samples were obtained at 16 and 28 weeks of gestation from 18 women who later developed preeclampsia (cases) and 18 matched women with normotensive pregnancies (controls). We studied miRNA expression profiles in plasma and subsequently confirmed miRNA and target gene expression in placenta samples. Placental samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. RESULTS: From the microarray, we identified one miRNA that was significantly differentially expressed between cases and controls at 16 weeks of gestation and six miRNAs that were significantly differentially expressed at 28 weeks. Following qPCR validation, only one miR-206 was found to be significantly increased in 28-week samples in women who later developed preeclampsia (1.4-fold change ±â€Š0.2). The trend for increase in miR-206 expression was mirrored within placental tissue from women with preeclampsia. In parallel, IGF-1, a target gene of miR-206, was also found to be downregulated (0.41 ±â€Š0.04) in placental tissue from women with preeclampsia. miR-206 expression was also detectable in myometrium tissue and trophoblast cell lines. CONCLUSION: Our pilot study has identified miRNA-206 as a novel factor upregulated in preeclampsia within the maternal circulation and in placental tissue.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/análise , Pré-Eclâmpsia/genética , Gravidez
15.
J Am Coll Cardiol ; 65(21): 2314-27, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26022821

RESUMO

BACKGROUND: Drug-eluting stents reduce the incidence of in-stent restenosis, but they result in delayed arterial healing and are associated with a chronic inflammatory response and hypersensitivity reactions. Identifying novel interventions to enhance wound healing and reduce the inflammatory response may improve long-term clinical outcomes. Micro-ribonucleic acids (miRNAs) are noncoding small ribonucleic acids that play a prominent role in the initiation and resolution of inflammation after vascular injury. OBJECTIVES: This study sought to identify miRNA regulation and function after implantation of bare-metal and drug-eluting stents. METHODS: Pig, mouse, and in vitro models were used to investigate the role of miRNA in in-stent restenosis. RESULTS: We documented a subset of inflammatory miRNAs activated after stenting in pigs, including the miR-21 stem loop miRNAs. Genetic ablation of the miR-21 stem loop attenuated neointimal formation in mice post-stenting. This occurred via enhanced levels of anti-inflammatory M2 macrophages coupled with an impaired sensitivity of smooth muscle cells to respond to vascular activation. CONCLUSIONS: MiR-21 plays a prominent role in promoting vascular inflammation and remodeling after stent injury. MiRNA-mediated modulation of the inflammatory response post-stenting may have therapeutic potential to accelerate wound healing and enhance the clinical efficacy of stenting.


Assuntos
Reestenose Coronária/metabolismo , Stents Farmacológicos , MicroRNAs/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo , Animais , Reestenose Coronária/prevenção & controle , Inflamação/metabolismo , Masculino , Camundongos Knockout , Suínos
16.
J Hypertens ; 33(3): 584-96; discussion 596, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25380151

RESUMO

BACKGROUND: There is a common structural progression in hypertensive renal damage with early arterial damage and fibrosis in the juxtamedullary cortex. METHOD: The present investigation identifies a common pathway using three-gene expression profiles from hypertensive rat models: 60-week-old spontaneously hypertensive rat (SHR), salt-loaded stroke-prone SHR (SHRSP), and the non-clipped kidney after 24 weeks of two-kidney, one-clip hypertension (2K1C). Kidney damage was scored using a specialized system. Gene-expression profiles were determined using microarrays and validated using a panel of 47 genes by quantitative real-time PCR. RESULTS: All groups showed kidney damage (SHRs: 0.32 ±â€Š0.09 vs. Wistar-Kyoto rats: 0.06 ±â€Š0.03; 2K1C: 0.27 ±â€Š0.13 vs. pooled controls: 0.01 ±â€Š0.01; SHRSP: 1.13 ±â€Š0.14 vs. WKY: 0.04 ±â€Š0.03; all P < 0.05). A total of 1614 genes were changed in the SHR experiment, 1323 in the SHRSP, and 576 in the 2K1C. Eighty-eight genes were similarly regulated in all three models. Gene ontology enrichment analysis identified 59 ontologies that were enriched in all three datasets. These included over-representation to extracellular matrix, response to oxidative stress, and immune system processes. Out of the 88 in-common genes, 40 could be connected in a common pathway that was compared to two gene-expression profiles from human kidneys with histologically verified fibrosis to identify a highly significant number of in-common genes that were also represented in the common genetic pathway. CONCLUSION: There is a common pathway during the development of hypertensive kidney damage in rats irrespective of model. Interestingly, large parts of this common pathway are conserved in human kidney damage, which may indicate a broader importance in the development of chronic kidney disease.


Assuntos
Regulação da Expressão Gênica , Hipertensão/metabolismo , Rim/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Animais , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Perfilação da Expressão Gênica , Humanos , Hipertensão/genética , Hipertensão/patologia , Rim/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Cloreto de Sódio na Dieta/metabolismo
17.
Hypertension ; 64(6): 1376-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201895

RESUMO

The lineage of the Y chromosome accounts for up to 15 to 20 mm Hg in arterial pressure. Genes located on the Y chromosome from the spontaneously hypertensive rat (SHR) are associated with the renin-angiotensin system. Given the important role of the renin-angiotensin system in the renal regulation of fluid homeostasis and arterial pressure, we hypothesized that the origin of the Y chromosome influences arterial pressure via interaction between the intrarenal vasculature and the renin-angiotensin system. Sixteen-week-old normotensive rats (Wistar Kyoto [WKY]), spontaneously hypertensive stroke-prone rat (SHRSP), and 2 reciprocal Y consomic rat strains, 1 comprising the WKY autosomes and X chromosome with the Y chromosome from the hypertensive rat strain (WKY.SPGlaY) and vice versa (SP.WKYGlaY), were examined. SP.WKYGlaY had lower systolic blood pressure than SHRSP (195±5 versus 227±8 mm Hg; P<0.03), whereas WKY.SPGlaY had higher systolic blood pressure compared with WKY (157±3 versus 148±3 mm Hg; P<0.05), measured by radiotelemetry. Compared with WKY rats, SHRSP had higher plasma angiotensin(1-7) (Ang (1-7)):Ang II ratio (WKY: 0.13±0.01 versus SHRSP: 1.33±0.4; P<0.005), greater angiotensin II receptor type 2 and Mas receptor mRNA expression, and a blunted renal constrictor response to intrarenal Ang I and Ang(1-7) infusions. Introgression of the normotensive Y chromosome into the SHRSP background (SP.WKYGlaY) restored responses in the SHRSP to WKY levels, evidenced by a reduction in plasma Ang(1-7):Ang II ratio (SP.WKYGlaY: 0.24±0.02; P<0.01), angiotensin II receptor type 2, and Mas receptor mRNA expression and an increased vasoconstrictor response to intrarenal Ang I and Ang(1-7) infusion. This study demonstrates that the origin of the Y chromosome significantly impacts the renal vascular responsiveness and therefore may influence the long-term renal regulation of blood pressure.


Assuntos
Angiotensina I/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/genética , Fragmentos de Peptídeos/farmacologia , Artéria Renal/fisiopatologia , Vasodilatação/efeitos dos fármacos , Cromossomo Y/genética , Animais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Artéria Renal/efeitos dos fármacos , Vasodilatadores
18.
J Hypertens ; 32(10): 2013-21; discussion 2021, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25084306

RESUMO

BACKGROUND: The genetic contribution to salt-sensitivity in hypertension remains unclear. We have previously identified a quantitative trait locus on chromosome 2 in stroke-prone spontaneously hypertensive rats (SHRSPs) responsible for an increase in SBP in response to a salt challenge. This response is blunted in the congenic SHRSP strain with the Wistar-Kyoto (WKY) chromosome 2 region (10 cM) introgressed (SP.WKYGla2k). We aimed to discover the mechanisms that underlie the effects of this region on salt-handling in the SHRSP strain. METHOD: Renal and adreno-cortical function were compared in the WKY, SHRSP and the congenic SP.WKYGla2k strains. RESULTS: In response to the salt challenge, all strains excreted more sodium, but the SHRSP strain excreted more protein and a greater amount of sodium compared with either the WKY or the SP.WKYGla2k strain (0.19 ±â€Š0.02 vs. 0.12 ±â€Š0.01 g/24 h and 0.09 ±â€Š0.02 g/24 h, respectively). Glomerular filtration was not affected by diet or genotype, but renal plasma flow was decreased in the SP.WKYGla2k and SHRSP strains. The SHRSP strain had higher plasma aldosterone in association with greater adrenal CYP11B2 (aldosterone synthase) and 3ß hydroxysteroid dehydrogenase mRNA gene expression when compared to the WKY strain. Strikingly, introgression of the WKY chromosome 2 region into the SHRSP strain corrected the proteinuria and reduced sodium excretion, plasma aldosterone levels and 3ß hydroxysteroid dehydrogenase mRNA gene expression in response to the salt challenge when compared to the SHRSP strain. Glucocorticoid levels and markers of glucocorticoid synthesis were unaffected. CONCLUSION: Our findings suggest that introgression of the chromosome 2 congenic interval from the WKY into the SHRSP strain is associated with restored aldosterone regulation sufficient to reduce salt-sensitive hypertension and proteinuria.


Assuntos
Aldosterona/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Locos de Características Quantitativas , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Cromossomos/genética , Genótipo , Hipertensão/complicações , Rim/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/etiologia
19.
Neuropathol Appl Neurobiol ; 40(7): 855-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24417612

RESUMO

AIMS: Cerebral small vessel disease (SVD) causes a fifth of all strokes plus diffuse brain damage leading to cognitive decline, physical disabilities and dementia. The aetiology and pathogenesis of SVD are unknown, but largely attributed to hypertension or microatheroma. METHODS: We used the spontaneously hypertensive stroke-prone rat (SHRSP), the closest spontaneous experimental model of human SVD, and age-matched control rats kept under identical, non-salt-loaded conditions, to perform a blinded analysis of mRNA microarray, qRT-PCR and pathway analysis in two brain regions (frontal and mid-coronal) commonly affected by SVD in the SHRSP at age five, 16 and 21 weeks. RESULTS: We found gene expression abnormalities, with fold changes ranging from 2.5 to 59 for the 10 most differentially expressed genes, related to endothelial tight junctions (reduced), nitric oxide bioavailability (reduced), myelination (impaired), glial and microglial activity (increased), matrix proteins (impaired), vascular reactivity (impaired) and albumin (reduced), consistent with protein expression defects in the same rats. All were present at age 5 weeks thus predating blood pressure elevation. 'Neurological' and 'inflammatory' pathways were more affected than 'vascular' functional pathways. CONCLUSIONS: This set of defects, although individually modest, when acting in combination could explain the SHRSP's susceptibility to microvascular and brain injury, compared with control rats. Similar combined, individually modest, but multiple neurovascular unit defects, could explain susceptibility to spontaneous human SVD.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/genética , Animais , Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Encefalite/complicações , Encefalite/genética , Expressão Gênica , Humanos , Masculino , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/genética , Análise Serial de Proteínas , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR
20.
Hypertension ; 63(3): 551-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24324041

RESUMO

A recent genome-wide association study identified a locus on chromosome 16 in the promoter region of the uromodulin (UMOD) gene that is associated with hypertension. Here, we examined the hypertension signal with functional studies in Umod knockout (KO) mice. Systolic blood pressure was significantly lower in KO versus wild-type (WT) mice under basal conditions (KO: 116.6±0.3 mm Hg versus WT: 136.2±0.4 mm Hg; P<0.0001). Administration of 2% NaCl did not alter systolic blood pressure in KO mice, whereas it increased in WT mice by ≈33%, P<0.001. The average 24-hour urinary sodium excretion in the KO was greater than that of WT mice (P<0.001). Chronic renal function curves demonstrate a leftward shift in KO mice, suggesting that the relationship between UMOD and blood pressure is affected by sodium. Creatinine clearance was increased during salt loading with 2% NaCl in the KO mice, leading to augmented filtered Na(+) excretion and further Na(+) loss. The difference in sodium uptake that exists between WT and KO strains was explored at the molecular level. Urinary tumor necrosis factor-α levels were significantly higher in KO mice compared with WT mice (P<0.0001). Stimulation of primary thick ascending limb of the loop of Henle cells with exogenous tumor necrosis factor-α caused a reduction in NKCC2A expression (P<0.001) with a concurrent rise in the levels of UMOD mRNA (P<0.001). Collectively, we demonstrate that UMOD regulates sodium uptake in the thick ascending limb of the loop of Henle by modulating the effect of tumor necrosis factor-α on NKCC2A expression, making UMOD an important determinant of blood pressure control.


Assuntos
Pressão Sanguínea/fisiologia , Regulação da Expressão Gênica , Hipertensão/genética , RNA/genética , Uromodulina/genética , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hipertensão Essencial , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo , Uromodulina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA