Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4184, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760360

RESUMO

Halide perovskites show great optoelectronic performance, but their favorable properties are paired with unusually strong anharmonicity. It was proposed that this combination derives from the ns2 electron configuration of octahedral cations and associated pseudo-Jahn-Teller effect. We show that such cations are not a prerequisite for the strong anharmonicity and low-energy lattice dynamics encountered in these materials. We combine X-ray diffraction, infrared and Raman spectroscopies, and molecular dynamics to contrast the lattice dynamics of CsSrBr3 with those of CsPbBr3, two compounds that are structurally similar but with the former lacking ns2 cations with the propensity to form electron lone pairs. We exploit low-frequency diffusive Raman scattering, nominally symmetry-forbidden in the cubic phase, as a fingerprint of anharmonicity and reveal that low-frequency tilting occurs irrespective of octahedral cation electron configuration. This highlights the role of structure in perovskite lattice dynamics, providing design rules for the emerging class of soft perovskite semiconductors.

2.
J Am Chem Soc ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819106

RESUMO

Polar and chiral crystal symmetries confer a variety of potentially useful functionalities upon solids by coupling otherwise noninteracting mechanical, electronic, optical, and magnetic degrees of freedom. We describe two phases of the 3D perovskite, CsSnBr3, which emerge below 85 K due to the formation of Sn(II) lone pairs and their interaction with extant octahedral tilts. Phase II (77 K < T < 85 K, space group P21/m) exhibits ferroaxial order driven by a noncollinear pattern of lone pair-driven distortions within the plane normal to the unique octahedral tilt axis, preserving the inversion symmetry observed at higher temperatures. Phase I (T < 77 K, space group P21) additionally exhibits ferroelectric order due to distortions along the unique tilt axis, breaking both inversion and mirror symmetries. This polar and chiral phase exhibits second harmonic generation from the bulk and pronounced electrostriction and negative thermal expansion along the polar axis (Q22 ≈ 1.1 m4 C-2; αb = -7.8 × 10-5 K-1) through the onset of polarization. The structures of phases I and II were predicted by recursively following harmonic phonon instabilities to generate a tree of candidate structures and subsequently corroborated by synchrotron X-ray powder diffraction and polarized Raman and 81Br nuclear quadrupole resonance spectroscopies. Preliminary attempts to suppress unintentional hole doping to allow for ferroelectric switching are described. Together, the polar symmetry, small band gap, large spin-orbit splitting of Sn 5p orbitals, and predicted strain sensitivity of the symmetry-breaking distortions suggest bulk samples and epitaxial films of CsSnBr3 or its neighboring solid solutions as candidates for bulk Rashba effects.

3.
ACS Energy Lett ; 6(12): 4365-4373, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34917771

RESUMO

Fast neutron imaging is a nondestructive technique for large-scale objects such as nuclear fuel rods. However, present detectors are based on conventional phosphors (typically microcrystalline ZnS:Cu) that have intrinsic drawbacks, including light scattering, γ-ray sensitivity, and afterglow. Fast neutron imaging with colloidal nanocrystals (NCs) was demonstrated to eliminate light scattering. While lead halide perovskite (LHP) FAPbBr3 NCs emitting brightly showed poor spatial resolution due to reabsorption, the Mn2+-doped CsPb(BrCl)3 NCs with oleyl ligands had higher resolution because of large apparent Stokes shift but insufficient concentration for high light yield. In this work, we demonstrate a NC scintillator that features simultaneously high quantum yields, high concentrations, and a large apparent Stokes shift. In particular, we use long-chain zwitterionic ligand capping in the synthesis of Mn2+-doped CsPb(BrCl)3 NCs that allows for attaining very high concentrations (>100 mg/mL) of colloids. The emissive behavior of these ASC18-capped NCs was carefully controlled by compositional tuning that permitted us to select for high quantum yields (>50%) coinciding with Mn-dominated emission for minimal self-absorption. These tailored Mn2+:CsPb(BrCl)3 NCs demonstrated over 8 times brighter light yield than their oleyl-capped variants under fast neutron irradiation, which is competitive with that of near-unity FAPbBr3 NCs, while essentially eliminating self-absorption. Because of their rare combination of concentrations above 100 mg/mL and high quantum yields, along with minimal self-absorption for good spatial resolution, Mn2+:CsPb(BrCl)3 NCs have the potential to displace ZnS:Cu as the leading scintillator for fast neutron imaging.

4.
ACS Photonics ; 8(11): 3357-3364, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34820475

RESUMO

The fast neutron imaging technique with recoil proton detection harbors significant potential for imaging of thick, large-scale objects containing high-Z elements. However, the challenge to find efficient fast neutron scintillators with high spatial resolution is ongoing. The list of requirements for such scintillators is long and demanding: a proton-rich, scattering-free material combining high light yield with the absence of light reabsorption. To meet these challenges, we look for a suitable material among a rising class of 0D organic-inorganic Pb(II) halide hybrids. The use of large organic cations, e.g., trihexyltetradecylphosphonium, results in room-temperature ionic liquids that combine highly Stokes-shifted (up to 1.7 eV), reabsorption-free, and efficient emission (photoluminescence quantum yield up to 60%) from molecularly small and dense (PbX2 molar fraction up to 0.33) emitting centers. We investigate the optical properties of the resulting ionic liquids and showcase their utility as fast neutron imaging scintillators. Concomitantly with good light yield, such fast-neutron scintillators exhibit both higher spatial resolution and lower γ-ray sensitivity compared with commercial ZnS:Cu-based screens.

5.
Chem Mater ; 33(7): 2408-2419, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33867666

RESUMO

Mixed-valent metal-halides containing ns2 lone pairs may exhibit intense visible absorption, while zero-dimensional (0D) ns2-based metal-chlorides are generally colorless but have demonstrated promising optoelectronic properties suitable for thermometry and radiation detection. Here, we report solvothermally synthesized mixed-valent 0D metal-halides Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 ≤ x ≤ 7). Rb23SbIII 7SbV 2Cl54 crystallizes in an orthorhombic space group (Cmcm) with a unique, layered 0D structure driven by the arrangement of the 5s2 lone pairs of the SbIIICl6 octahedra. This red material is likely the true structure of a previously reported monoclinic "Rb2.67SbCl6" phase, the structure of which was not determined. Partially or fully substituting SbIII with isoelectronic BiIII yields the series Rb23BiIII x SbIII 7-x SbV 2Cl54 (0 < x ≤ 7), which exhibits a similar layered 0D structure but with additional disorder that yields a trigonal crystal system with an enantiomorphic space group (R32). Second harmonic generation of 532 nm light from a 1064 nm laser using Rb23BiIII 7SbV 2Cl54 powder confirms the noncentrosymmetry of this space group. As with the prototypical mixed-valent pnictogen halides, the visible absorption bands of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family are the result of intervalent SbIII-SbV and mixed-valent BiIII-SbV charge transfer bands (CTB), with a blueshift of the absorption edge as BiIII substitution increases. No PL is observed from this family of semiconductors, but a crystal of Rb23BiIII 7SbV 2Cl54 exhibits a high resistivity of 1.0 × 1010 Ω·cm and X-ray photoconductivity with a promising µτ product of 8.0 × 10-5 cm2 s-1 V-1. The unique 0D layered structures of the Rb23BiIII x SbIII 7-x SbV 2Cl54 family highlight the versatility of the ns2 lone pair in semiconducting metal-halides, pointing the way toward new functional 0D metal-halide compounds.

6.
J Am Chem Soc ; 143(4): 2068-2077, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33492148

RESUMO

The detection of γ-rays at room temperature with high-energy resolution using semiconductors is one of the most challenging applications. The presence of even the smallest amount of defects is sufficient to kill the signal generated from γ-rays which makes the availability of semiconductors detectors a rarity. Lead halide perovskite semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties and are poised to strongly impact applications in photoelectric conversion/detection. Here we demonstrate for the first time that large size single crystals of the all-inorganic perovskite CsPbCl3 semiconductor can function as a high-performance detector for γ-ray nuclear radiation at room temperature. CsPbCl3 is a wide-gap semiconductor with a bandgap of 3.03 eV and possesses a high effective atomic number of 69.8. We identified the two distinct phase transitions in CsPbCl3, from cubic (Pm-3m) to tetragonal (P4/mbm) at 325 K and finally to orthorhombic (Pbnm) at 316 K. Despite crystal twinning induced by phase transitions, CsPbCl3 crystals in detector grade can be obtained with high electrical resistivity of ∼1.7 × 109 Ω·cm. The crystals were grown from the melt with volume over several cubic centimeters and have a low thermal conductivity of 0.6 W m-1 K-1. The mobilities for electron and hole carriers were determined to ∼30 cm2/(V s). Using photoemission yield spectroscopy in air (PYSA), we determined the valence band maximum at 5.66 ± 0.05 eV. Under γ-ray exposure, our Schottky-type planar CsPbCl3 detector achieved an excellent energy resolution (∼16% at 122 keV) accompanied by a high figure-of-merit hole mobility-lifetime product (3.2 × 10-4 cm2/V) and a long hole lifetime (16 µs). The results demonstrate considerable defect tolerance of CsPbCl3 and suggest its strong potential for γ-radiation and X-ray detection at room temperature and above.

7.
J Am Chem Soc ; 143(5): 2340-2347, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33502184

RESUMO

APbBr3 (A = Cs, CH3NH3) are prototype halide perovskites having bandgaps of 2.30-2.35 eV at room temperature, rendering their apparent color nearly identical (bright orange but opaque). Upon optical excitation, they emit bright photoluminescence (PL) arising from carrier recombination whose spectral features are also similar. At 10 K, however, the apparent color of CsPbBr3 becomes transparent yellow, whereas that of CH3NH3PbBr3 does not change significantly due to the presence of an indirect Rashba gap. With increasing the excitation level, evolution of the PL spectra, which are excitonic at 10 K, reveals the emergence of P-band emission arising from inelastic exciton-exciton scattering. Based on the spectral location of the P-band, exciton binding energies are determined to be 21.6 ± 2.0 and 38.3 ± 3.0 meV for CsPbBr3 and CH3NH3PbBr3, respectively. Intriguingly, upon further increase in the exciton density, electron-hole plasma appears in CsPbBr3 as evidenced by both red-shift and broadening of the PL. This phase, however, does not occur in CH3NH3PbBr3 presumably due to polaronic effects. Although the A-site cation is believed not to directly impact optical properties of APbBr3, our results underscore its critical role, which destines different high-density phases and apparent color at low temperatures.

8.
J Am Chem Soc ; 142(50): 21059-21067, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33217232

RESUMO

Recently, halide perovskites have gained significant attention from the perspective of efficient spintronics owing to the Rashba effect. This effect occurs as a consequence of strong spin-orbit coupling under a noncentrosymmetric environment, which can be dynamic and/or static. However, there exist intense debates on the origin of broken inversion symmetry since the halide perovskites typically crystallize into a centrosymmetric structure. In order to clarify the issue, we examine both dynamic and static effects in the all-inorganic CsPbBr3 and organic-inorganic CH3NH3PbBr3 (MAPbBr3) perovskite single crystals by employing temperature- and polarization-dependent photoluminescence excitation spectroscopy. The perovskite single crystals manifest the dynamic effect by photon recycling in the indirect Rashba gap, causing dual peaks in the photoluminescence. However, the effect vanishes in CsPbBr3 at low temperatures (<50 K) accompanied by a striking color change of the crystal, arising presumably from lower degrees of freedom for inversion symmetry breaking associated with the thermal motion of the spherical Cs cation compared with the polar MA cation in MAPbBr3. We also show that the static Rashba effect occurs only in MAPbBr3 below 90 K, presumably due to surface reconstruction via MA-cation ordering, which likely extends across a few layers from the crystal surface to the interior. We further demonstrate that this static Rashba effect can be completely suppressed upon surface treatment with polymethyl methacrylate (PMMA) coating. We believe that our results provide a rationale for the Rashba effects in halide perovskites.

9.
ACS Mater Lett ; 2(9): 1218-1232, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32954359

RESUMO

Low-dimensional metal halides have been the focus of intense investigations in recent years following the success of hybrid lead halide perovskites as optoelectronic materials. In particular, the light emission of low-dimensional halides based on the 5s2 cations Sn2+ and Sb3+ has found utility in a variety of applications complementary to those of the three-dimensional halide perovskites because of its unusual properties such as broadband character and highly temperature-dependent lifetime. These properties derive from the exceptional chemistry of the 5s2 lone pair, but the terminology and explanations given for such emission vary widely, hampering efforts to build a cohesive understanding of these materials that would lead to the development of efficient optoelectronic devices. In this Perspective, we provide a structural overview of these materials with a focus on the dynamics driven by the stereoactivity of the 5s2 lone pair to identify the structural features that enable strong emission. We unite the different theoretical models that have been able to explain the success of these bright 5s2 emission centers into a cohesive framework, which is then applied to the array of compounds recently developed by our group and other researchers, demonstrating its utility and generating a holistic picture of the field from the point of view of a materials chemist. We highlight those state-of-the-art materials and applications that demonstrate the unique capabilities of these versatile emissive centers and identify promising future directions in the field of low-dimensional 5s2 metal halides.

10.
ACS Nano ; 14(11): 14686-14697, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32897688

RESUMO

Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr3 NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at ∼2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr3 light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr3 is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.

11.
Chem Mater ; 32(12): 5118-5124, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32595266

RESUMO

The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns2-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, coupling these features with an appropriately robust, fully inorganic material containing Sb3+ in an octahedral halide environment has proven to be a challenge. Here, we investigate Sb3+ as a dopant in a solution-grown metal halide double perovskite (DP) matrix, namely Cs2MInCl6:xSb (M = Na, K, x = 0-100%). Cs2KInCl6 is found to crystallize in the tetragonal DP phase, unlike Cs2NaInCl6 that adopts the traditional cubic DP structure. This structural difference results in distinct emission colors, as Cs2NaInCl6:xSb and Cs2KInCl6:xSb compounds exhibit broadband blue and green emissions, respectively, with photoluminescence quantum yields (PLQYs) of up to 93%. Spectroscopic and computational investigations confirm that this efficient emission originates from Sb(III)-hosted STEs. These fully inorganic DP compounds demonstrate that Sb(III) can be incorporated as a bright emissive center for stable lighting applications.

12.
Angew Chem Int Ed Engl ; 59(34): 14490-14497, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32472624

RESUMO

Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.

13.
Nature ; 579(7799): E9, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32112062

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nature ; 577(7790): 346-349, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942050

RESUMO

Highly efficient neutron detectors are critical in many sectors, including national security1,2, medicine3, crystallography4 and astronomy5. The main neutron detection technologies currently used involve 3He-gas-filled proportional counters6 and light scintillators7 for thermalized neutrons. Semiconductors could provide the next generation of neutron detectors because their advantages could make them competitive with or superior to existing detectors. In particular, solids with a high concentration of high-neutron-capture nuclides (such as 6Li, 10B) could be used to develop smaller detectors with high intrinsic efficiencies. However, no promising materials have been reported so far for the construction of direct-conversion semiconductor detectors. Here we report on the semiconductor LiInP2Se6 and demonstrate its potential as a candidate material for the direct detection of thermal neutrons at room temperature. This compound has a good thermal-neutron-capture cross-section, a suitable bandgap (2.06 electronvolts) and a favourable electronic band structure for efficient electron charge transport. We used α particles from an 241Am source as a proxy for the neutron-capture reaction and determined that the compact two-dimensional (2D) LiInP2Se6 detectors resolved the full-energy peak with an energy resolution of 13.9 per cent. Direct neutron detection from a moderated Pu-Be source was achieved using 6Li-enriched (95 per cent) LiInP2Se6 detectors with full-peak resolution. We anticipate that these results will spark interest in this field and enable the replacement of 3He counters by semiconductor-based neutron detectors.

15.
Nat Commun ; 9(1): 1609, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686385

RESUMO

Gamma-ray detection and spectroscopy is the quantitative determination of their energy spectra, and is of critical value and critically important in diverse technological and scientific fields. Here we report an improved melt growth method for cesium lead bromide and a special detector design with asymmetrical metal electrode configuration that leads to a high performance at room temperature. As-grown centimeter-sized crystals possess extremely low impurity levels (below 10 p.p.m. for total 69 elements) and detectors achieve 3.9% energy resolution for 122 keV 57Co gamma-ray and 3.8% for 662 keV 137Cs gamma-ray. Cesium lead bromide is unique among all gamma-ray detection materials in that its hole transport properties are responsible for the high performance. The superior mobility-lifetime product for holes (1.34 × 10-3 cm2 V-1) derives mainly from the record long hole carrier lifetime (over 25 µs). The easily scalable crystal growth and high-energy resolution, highlight cesium lead bromide as an exceptional next generation material for room temperature radiation detection.

16.
J Am Chem Soc ; 140(5): 1894-1899, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29332382

RESUMO

Cu2I2Se6 is a new wide-bandgap semiconductor with high stability and great potential toward hard radiation and photon detection. Cu2I2Se6 crystallizes in the rhombohedral R3̅m space group with a density of d = 5.287 g·cm-3 and a wide bandgap Eg of 1.95 eV. First-principles electronic band structure calculations at the density functional theory level indicate an indirect bandgap and a low electron effective mass me* of 0.32. The congruently melting compound was grown in centimeter-size Cu2I2Se6 single crystals using a vertical Bridgman method. A high electric resistivity of ∼1012 Ω·cm is readily achieved, and detectors made of Cu2I2Se6 single crystals demonstrate high photosensitivity to Ag Kα X-rays (22.4 keV) and show spectroscopic performance with energy resolutions under 241Am α-particles (5.5 MeV) radiation. The electron mobility is measured by a time-of-flight technique to be ∼46 cm2·V-1·s-1. This value is comparable to that of one of the leading γ-ray detector materials, TlBr, and is a factor of 30 higher than mobility values obtained for amorphous Se for X-ray detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA