Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38432622

RESUMO

BACKGROUND: Alcohol use disorder (AUD) is associated with high rates of trauma, mood, and anxiety disorders. Individual symptoms highly overlap across diagnoses, highlighting the need for a transdiagnostic approach. Further, there is limited research on how transdiagnostic psychopathology impacts the neural correlates of AUD. Thus, we aimed to identify symptom factors spanning diagnoses and how they relate to the neurocircuitry of addiction. METHODS: Eighty-six Veterans with AUD completed self-report measures and reward, incentive salience and cognitive control fMRI tasks. Factor analysis was performed on self-reported trauma, depression, anxiety, and stress symptoms to obtain transdiagnostic symptom compositions. Neural correlates with a-priori-defined regions of interest in the three networks were assessed. Independent samples t-tests compared the same nodes by DSM-5 diagnosis. RESULTS: Four symptom factors were identified: trauma distress, negative affect, hyperarousal, and somatic anxiety. Trauma distress score was associated with increased cognitive control activity regions during response inhibition (dACC). Negative affect related to lower activation in reward regions (R.Caudate) but higher activation in cognitive control regions during response inhibition (L.dlPFC). Hyperarousal related to lower reward activity during monetary reward anticipation (L.Caudate, R.Caudate) Somatic anxiety was not significantly associated with brain activation. No difference in neural activity was found by PTSD, MDD or GAD diagnosis CONCLUSION: These preliminary, hypothesis-generating findings offer transdiagnostic symptom factors that are differentially associated with neural function and could guide us towards a brain-based classification of psychiatric dysfunction in AUD. Results warrant further investigation of transdiagnostic approaches to symptoms in addiction.

2.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 164-177, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38197808

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) offers a promising treatment avenue to modulate brain function in alcohol use disorder (AUD). To the best of our knowledge, this pilot study is the first randomized, double-blind, sham-controlled trial to deliver intermittent theta burst stimulation to the left dorsolateral prefrontal cortex (DLPFC) among US veterans with AUD. We hypothesized that 20 sessions of real TMS are tolerable and feasible. As a secondary line of inquiry, we hypothesized that, relative to sham TMS, individuals receiving real TMS would experience greater reductions in 6-month relapse rates, anhedonia, and alcohol cue-reactivity. METHODS: Veterans (n = 17, one woman) were enrolled in a double-blind, sham-controlled trial (2-3 sessions/day; 7-10 days; 600 pulses/session; 20 sessions). Pre- and posttreatment assessments included responses to self-report questionnaires and functional magnetic resonance imaging measures of alcohol cue-reactivity. Alcohol consumption was assessed for 6 months. Linear mixed-effects models were constructed to predict posttreatment craving, mood, and cue-reactivity. RESULTS: Individuals who received active iTBS (n = 8) were less likely to relapse within 3 months after treatment than the sham-treated group (n = 9) (OR = 12.0). Greater reductions in anhedonia were observed following active iTBS (Cohen's d = -0.59), relative to sham (d = -0.25). Alcohol cue-reactivity was reduced following active iTBS and increased following sham within the left insula (d = -0.19 vs. 0.51), left thalamus (d = -0.28 vs. 0.77), right insula (d = 0.18 vs. 0.52), and right thalamus (d = -0.06 vs. 0.62). CONCLUSIONS: Relative to sham, we demonstrate that 20 sessions of real left DLPFC iTBS reduced the likelihood of relapse for at least 3 months. The potential utility of this approach is underscored by observed decreases in anhedonia and alcohol cue-reactivity-strong predictors of relapse among veterans. These initial data offer a valuable set of effect sizes to inform future clinical trials in this patient population.

3.
Biol Psychiatry Glob Open Sci ; 3(2): 301-310, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124360

RESUMO

Background: Alcohol use disorder (AUD) is associated with elevated brain response to cues. Recent studies have suggested that theta burst stimulation (TBS) to the medial prefrontal cortex (MPFC) can decrease reactivity to cues in a transdiagnostic manner. The goal of this clinical trial was to evaluate the effect of continuous TBS as a tool to decrease drinking behavior and brain reactivity to alcohol cues among individuals with AUD. Methods: A total of 50 individuals with AUD were recruited from an intensive outpatient treatment program. Using a randomized, double-blind, sham-controlled design, participants received 10 sessions of continuous TBS (left frontal pole, 1 session/10 days, 110% resting motor threshold, 3600 pulse/session, cue provocation before and during session). Brain reactivity to alcohol cues was acquired at four time points: at baseline and after all TBS sessions (1 month, 2 months, and 3 months). Results: Overall, 80% of the participants completed all TBS sessions. Individuals who received real TBS were 2.71 times more likely to remain enrolled in the study after 3 months and 3.09 times more likely to remain sober 3 months after treatment initiation. Real TBS also led to a significantly greater reduction in brain reactivity to alcohol cues, specifically a reduction in MPFC-striatum and MPFC-insula connectivity 2 and 3 months after TBS treatment. Conclusions: Ten days of MPFC TBS is well tolerated, reduces drinking, and decreases brain reactivity to alcohol cues for up to 3 months after treatment initiation. These results pave a critical next step in the path toward developing transcranial magnetic stimulation as an intervention for AUD and disorders associated with elevated cue reactivity.

5.
Front Psychiatry ; 13: 893833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656355

RESUMO

Alcohol use disorder (AUD) continues to be challenging to treat despite the best available interventions, with two-thirds of individuals going on to relapse by 1 year after treatment. Recent advances in the brain-based conceptual framework of addiction have allowed the field to pivot into a neuromodulation approach to intervention for these devastative disorders. Small trials of repetitive transcranial magnetic stimulation (rTMS) have used protocols developed for other psychiatric conditions and applied them to those with addiction with modest efficacy. Recent evidence suggests that a TMS approach focused on modulating the salience network (SN), a circuit at the crossroads of large-scale networks associated with AUD, may be a fruitful therapeutic strategy. The anterior insula or dorsal anterior cingulate cortex may be particularly effective stimulation sites given emerging evidence of their roles in processes associated with relapse.

6.
Front Psychiatry ; 13: 869070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573331

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique which is now being used in psychiatry clinics across the world as a therapeutic tool for a variety of neural-circuit based disorders (e.g., major depression, obsessive compulsive disorder, substance use disorders, post-traumatic stress disorder, headache, pain). The higher volume of use and publication of multiple large-scale clinical trials has provided researchers with a unique opportunity to retrospectively evaluate factors influencing TMS treatment responses in large samples of patients. While many studies have focused on TMS protocol parameters as moderators of treatment efficacy, sex/gender is another critical, often overlooked factor influencing TMS treatment outcome. Women, especially during periods of high estradiol, appear to be particularly sensitive to the therapeutic effects of rTMS. This manuscript makes a case for three potential biological explanations for these findings. Drawing on literature from cranio-facial anatomy, neuroimaging, and neuroendocrine fields, we posit that observed increases in response rates of women in clinical rTMS trials may be related to: (1) Closer proximity of the brain to the scalp at the prefrontal cortex, leading to larger TMS induced electric fields especially at the medial prefrontal cortex, (2) Greater gray matter density and gyrification in the prefrontal cortex, and (3) High levels of estradiol which facilitate cortical excitability. These biological explanations are empirical ideas which have been evaluated in laboratory studies and lend themselves to prospective evaluation in multisite clinical rTMS trials. The existing literature on this topic and these three potential biological explanations all indicate that the TMS field should routinely evaluate sex/gender (and associated biological metrics like scalp-to-cortex distance, gray matter density, estradiol/progesterone levels) as a factor that may influence treatment outcome.

7.
Alcohol Clin Exp Res ; 45(8): 1672-1683, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34120347

RESUMO

BACKGROUND: There is growing interest in neuromodulation-based therapeutics as tools for individuals with alcohol use disorder (AUD). Through electromagnetic induction, techniques such as transcranial magnetic stimulation (TMS) can noninvasively depolarize cortical cells in the induced electrical field and monosynaptic afferents. The ability of TMS to modulate the brain is dependent upon two factors, which may be compromised in individuals with AUD: (1) gray matter volume (GMV) at the site of stimulation and (2) scalp-to-cortex (STC) distance. This study tested the hypotheses that these aspects of neural architecture are compromised in AUD patients, and thus AUD patients may need a higher TMS dose to depolarize the cortex. METHODS: High-resolution magnetic resonance images were acquired from 44 individuals with AUD and 44 age-matched healthy controls (n = 88). Whole-brain voxel-based morphometry was conducted. Subsequent region-of-interest analysis was performed at three EEG 10-20 sites commonly used in TMS for AUD: FP1 (left frontal pole), F3 (left DLPFC), and C3 (left motor cortex). STC distance and TMS electric fields were assessed at these EEG sites. RESULTS: Individuals with AUD had significantly lower GMV in the bilateral orbitofrontal cortices, supramarginal gyri, and the left DLPFC (voxel-threshold p < 0.05, cluster-threshold p < 0.05) and within all 3 TMS target locations, F (1, 264) = 14.12, p = 0.0002. There was no significant difference in STC distance between the AUD and the healthy control group at any tested cortical location, F (3, 252) = 1.906, p = 0.129. CONCLUSIONS: Individuals with AUD had significantly lower GMV in multiple areas of interest for TMS treatment; however, these volumetric reductions did not impact STC distance. Given previous studies that have shown TMS-evoked changes in cortical and subcortical activity to be dependent on GMV, these data suggest that individuals with AUD may require higher doses of TMS to sufficiently modulate the neural circuits of interest.


Assuntos
Alcoolismo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Adulto , Alcoolismo/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana
8.
Sci Rep ; 11(1): 8726, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888752

RESUMO

Theta-burst stimulation (TBS) is a form of non-invasive neuromodulation which is delivered in an intermittent (iTBS) or continuous (cTBS) manner. Although 600 pulses is the most common dose, the goal of these experiments was to evaluate the effect of higher per-dose pulse numbers on cortical excitability. Sixty individuals were recruited for 2 experiments. In Experiment 1, participants received 600, 1200, 1800, or sham (600) iTBS (4 visits, counterbalanced, left motor cortex, 80% active threshold). In Experiment 2, participants received 600, 1200, 1800, 3600, or sham (600) cTBS (5 visits, counterbalanced). Motor evoked potentials (MEP) were measured in 10-min increments for 60 min. For iTBS, there was a significant interaction between dose and time (F = 3.8296, p = 0.01), driven by iTBS (1200) which decreased excitability for up to 50 min (t = 3.1267, p = 0.001). For cTBS, there was no overall interaction between dose and time (F = 1.1513, p = 0.33). Relative to sham, cTBS (3600) increased excitability for up to 60 min (t = 2.0880, p = 0.04). There were no other significant effects of dose relative to sham in either experiment. Secondary analyses revealed high within and between subject variability. These results suggest that iTBS (1200) and cTBS (3600) are, respectively, the most effective doses for decreasing and increasing cortical excitability.


Assuntos
Excitabilidade Cortical , Ritmo Teta/fisiologia , Adulto , Eletromiografia , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
9.
Hum Brain Mapp ; 42(1): 128-138, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089953

RESUMO

The purpose of this study was to develop and evaluate a new, open-source MR-compatible device capable of assessing unipedal and bipedal lower extremity movement with minimal head motion and high test-retest reliability. To evaluate the prototype, 20 healthy adults participated in two magnetic resonance imaging (MRI) visits, separated by 2-6 months, in which they performed a visually guided dorsiflexion/plantar flexion task with their left foot, right foot, and alternating feet. Dependent measures included: evoked blood oxygen level-dependent (BOLD) signal in the motor network, head movement associated with dorsiflexion/plantar flexion, the test-retest reliability of these measurements. Left and right unipedal movement led to a significant increase in BOLD signal compared to rest in the medial portion of the right and left primary motor cortex (respectively), and the ipsilateral cerebellum (FWE corrected, p < .001). Average head motion was 0.10 ± 0.02 mm. The test-retest reliability was high for the functional MRI data (intraclass correlation coefficients [ICCs]: >0.75) and the angular displacement of the ankle joint (ICC: 0.842). This bipedal device can robustly isolate activity in the motor network during alternating plantarflexion and dorsiflexion with minimal head movement, while providing high test-retest reliability. Ultimately, these data and open-source building instructions will provide a new, economical tool for investigators interested in evaluating brain function resulting from lower extremity movement.


Assuntos
Cerebelo/fisiologia , Técnicas de Diagnóstico Neurológico/instrumentação , Desenho de Equipamento/normas , Neuroimagem Funcional , Movimentos da Cabeça/fisiologia , Extremidade Inferior/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Cerebelo/diagnóstico por imagem , Feminino , Neuroimagem Funcional/normas , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Adulto Jovem
10.
Drug Alcohol Depend ; 218: 108409, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250384

RESUMO

BACKGROUND: Poorly controlled chronic pain can lead to non-prescription use of opiates, which is a growing crisis in our communities. Transcranial magnetic stimulation (TMS) is a non-invasive therapeutic tool which has emerged as a potential treatment option for these patients. It is still unclear, however, if the dorsolateral prefrontal cortex (DLPFC) or the motor cortex (MC) is a more effective treatment location. The purpose of this study was to directly compare the effects of DLPFC versus MC TMS on pain severity and the urge to use opiates among chronic pain patients. METHODS: Twenty-two individuals with chronic pain currently using prescription opiates were randomized to receive 10, 3000 pulse sessions of 10 Hz repetitive TMS (rTMS) to the left DLPFC (110% resting motor threshold) or left MC (90% resting motor threshold). Multivariate linear models were used to evaluate the effect of TMS on pain and opiate use, including items from the Brief Pain Inventory (BPI) as well as subjective ratings of pain, distress, and the urge for opiates. RESULTS: Twenty participants (91%) completed all 10 treatment sessions and follow up visits. There was a main effect of stimulation site (F7,210 = 3.742, p = 0.001), wherein MC stimulation decreased pain interference significantly more than DLPFC stimulation (F1,216 = 8.447, p = 0.004). While both sites had comparable effect sizes on stress, pain, and discomfort, MC stimulation had larger effects on pain interference (Cohen's d: 0.7) and urge to use opiates (Cohen's d: 0.5) than DLPFC stimulation. CONCLUSION: These data suggest that the MC may be a promising target for decreasing opiate dependence and pain interference among chronic pain patients.


Assuntos
Dor Crônica/terapia , Transtornos Relacionados ao Uso de Opioides/terapia , Estimulação Magnética Transcraniana , Adulto , Analgésicos Opioides , Dor Crônica/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor , Alcaloides Opiáceos , Medição da Dor , Córtex Pré-Frontal/fisiologia , Descanso , Resultado do Tratamento
11.
Neurotherapeutics ; 17(1): 116-126, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452080

RESUMO

Alcohol use disorders remain one of the leading causes of mortality and morbidity across the world, yet despite this impact, there are few treatment options for patients suffering from these disorders. To this end, non-invasive brain stimulation, most commonly utilizing technologies including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has recently emerged as promising potential treatments for alcohol use disorders. Enthusiasm for these interventions is fueled by their non-invasive nature, generally favorable safety profile, and ability to target and modulate brain regions implicated in substance use disorders. In this paper, we describe the underlying principles behind these commonly used stimulation technologies, summarize existing experiments and randomized controlled trials, and provide an integrative summary with suggestions for future areas of research. Currently available data generally supports the use of non-invasive brain stimulation as a near-term treatment for alcohol use disorder, with important caveats regarding the use of stimulation in this patient population.


Assuntos
Alcoolismo/terapia , Encéfalo/fisiopatologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Alcoolismo/fisiopatologia , Ensaios Clínicos como Assunto , Humanos , Estimulação Transcraniana por Corrente Contínua/tendências , Estimulação Magnética Transcraniana/tendências , Resultado do Tratamento
12.
Front Behav Neurosci ; 11: 137, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785210

RESUMO

Marijuana is a prevalent illicit substance used by adolescents, and several studies have indicated that adolescent use can lead to long-term cognitive deficits including problems with attention and memory. However, preclinical animal studies that observe cognitive deficits after cannabinoid exposure during adolescence utilize experimenter administration of doses of cannabinoids that may exceed what an organism would choose to take, suggesting that contingency and dose are critical factors that need to be addressed in translational models of consequences of cannabinoid exposure. Indeed, we recently developed an adolescent cannabinoid self-administration paradigm in male rats, and found that prior adolescent self-administration of the cannabinoid receptor agonist WIN55,212-2 (WIN) resulted in improved working memory performance in adulthood. In addition, the doses self-administered were not as high as those that are found to produce memory deficits. However, given known sex differences in both drug self-administration and learning and memory processes, it is possible that cannabinoid self-administration could have different cognitive consequences in females. Therefore, we aimed to explore the effects of self-administered vs. experimenter-administered WIN in adolescent female rats on adult cognitive function. Female rats were trained to self-administer WIN daily throughout adolescence (postnatal day 34-59). A control group self-administered vehicle solution. The acute effects of adolescent WIN self-administration on memory were determined using a short-term spatial memory test 24 h after final SA session; and the long-term effects on cognitive performance were assessed during protracted abstinence in adulthood using a delayed-match-to-sample working memory task. In a separate experiment, females were given daily intraperitoneal (IP) injections of a low or high dose of WIN, corresponding to self-administered and typical experimenter-administered doses, respectively, or its vehicle during adolescence and working memory was assessed under drug-free conditions in adulthood. While self-administration of WIN in adolescence had no significant effects on short-term spatial memory or adult working memory, experimenter administration of WIN resulted in improved adult working memory performance that was more pronounced in the low dose group. Thus, low-dose adolescent WIN exposure, whether self-administered or experimenter-administered, results in either improvements or no change in adult working memory performance in female rats, similar to previous results found in males.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA