Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EMBO Rep ; 23(4): e51932, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080333

RESUMO

Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL-4/6), chemokines (IL-8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear. Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore-forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.


Assuntos
Lisossomos , Membrana Celular/metabolismo , Proliferação de Células , Lisossomos/metabolismo
2.
Nanoscale ; 12(27): 14751-14763, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32626858

RESUMO

Whilst there is an extensive body of preclinical nanomedicine research, translation to clinical settings has been slow. Here we present a novel approach to the targeted nanoparticle (NP) concept: utilizing both a novel targeting ligand, VNAR (Variable New Antigen Receptor), a shark-derived single chain binding domain, and an under-investigated target in delta-like ligand 4 (DLL4). We describe the development of an anti-DLL4 VNAR and the site-specific conjugation of this to poly(lactic-co-glycolic) acid PEGylated NPs using surface maleimide functional groups. These nanoconjugates were shown to specifically bind DLL4 with high affinity and were preferentially internalized by DLL4-expressing pancreatic cancer cell lines and endothelial cells. Furthermore, a distinct anti-angiogenic effect endowed by the anti-DLL4 VNAR was evident in in vitro tubulogenic assays. Taken together these findings highlight the potential of anti-DLL4 targeted polymeric NPs as a novel therapeutic approach in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Inibidores da Angiogênese , Células Endoteliais , Humanos , Nanoconjugados , Nanomedicina , Neoplasias Pancreáticas/tratamento farmacológico
3.
Cell Commun Signal ; 16(1): 77, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30409180

RESUMO

BACKGROUND: The deubiquitinase USP17 is overexpressed in NSCLC and has been shown to be required for the growth and motility of EGFR wild-type (WT) NSCLC cells. USP17 is also required for clathrin-mediated endocytosis of EGFR. Here, we examine the impact of USP17 depletion on the growth, as well as EGFR endocytosis and signaling, of EGFR mutant (MT) NSCLC cells. In particular, we examine NSCLC cells harboring an EGFR activating exon 19 deletion (HCC827), or both the L858R activating mutation and the T790M resistance gatekeeper mutation (H1975) which renders them resistant to EGFR tyrosine kinase inhibitors (TKIs). METHODS: MTT, trypan blue and clonogenic assays, confocal microscopy, Western blotting and cell cycle analysis were performed. RESULTS: USP17 depletion blocks the growth of EGFRMT NSCLC cells carrying either the EGFR exon 19 deletion, or L858R/T790M double mutation. In contrast to EGFRWT cells, USP17 depletion also triggers apoptosis of EGFRMT NSCLC cells. USP17 is required for clathrin-mediated endocytosis in these EGFRMT NSCLC cells, but it is not required for the internalization of the mutated EGFR receptors. Instead, USP17 depletion alters the localization of these receptors within the cell, and although it does not decrease basal EGFR activation, it potently reduces activation of Src, a key kinase in mutant EGFR-dependent tumorigenicity. Finally, we demonstrate that USP17 depletion can trigger apoptosis in EGFRWT NSCLC cells, when combined with the EGFR tyrosine kinase inhibitor (TKI) gefitinib. CONCLUSIONS: Our data reveals that USP17 facilitates trafficking and oncogenic signaling of mutant EGFR and indicates targeting USP17 could represent a viable therapeutic strategy in NSCLC tumours carrying either an EGFR activating mutation, or a resistance gatekeeper mutation.


Assuntos
Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/patologia , Endopeptidases/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Transdução de Sinais , Células A549 , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Receptores ErbB/genética , Humanos , Transporte Proteico , Quinases da Família src/metabolismo
4.
J Control Release ; 279: 316-325, 2018 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-29704616

RESUMO

Klebsiella pneumoniae is a foremost gram-negative pathogen that can induce life-threatening nosocomial pulmonary infections. Although it can be phagocytosed successfully by lung resident macrophages, this pathogen remains viable within vacuolar compartments, resulting in chronic infection and limiting therapeutic treatment with antibiotics. In this study, we aimed to generate and evaluate a cell-penetrant antibiotic poly(lactide-co-glycolide) (PLGA)-based formulation that could successfully treat intracellular K. pneumoniae infection. Screening of formulation conditions allowed the generation of high drug loaded nanoparticles through a water-in-oil-in-water approach. We demonstrated the therapeutic usefulness of these gentamicin-loaded nanoparticles (GNPs), showing their ability to improve survival and provide extended prophylactic protection towards K. pneumoniae using a Galleria mellonella infection model. We subsequently showed that the GNPs could be phagocytosed by K. pneumoniae infected macrophages, and significantly reduce the viability of the intracellular bacteria without further stimulation of pro-inflammatory or pro-apoptotic effects on the macrophages. Taken together, these results clearly show the potential to use antibiotic loaded NPs to treat intracellular K. pneumoniae infection, reducing bacterial viability without concomitant stimulation of inflammatory or pyroptotic pathways in the treated cells.


Assuntos
Antibacterianos/administração & dosagem , Gentamicinas/administração & dosagem , Infecções por Klebsiella/tratamento farmacológico , Nanopartículas , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Portadores de Fármacos/química , Gentamicinas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Macrófagos/metabolismo , Mariposas/microbiologia , Fagocitose/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
5.
Biochem J ; 473(24): 4507-4525, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27941029

RESUMO

In recent times, our knowledge of the roles ubiquitin plays in multiple cellular processes has expanded exponentially, with one example being the role of ubiquitin in receptor endocytosis and trafficking. This has prompted a multitude of studies examining how the different machinery involved in the addition and removal of ubiquitin can influence this process. Multiple deubiquitylating enzymes (DUBs) have been implicated either in facilitating receptor endocytosis and lysosomal degradation or in rescuing receptor levels by preventing endocytosis and/or promoting recycling to the plasma membrane. In this review, we will discuss in detail what is currently known about the role of DUBs in regulating the endocytosis of various transmembrane receptors and ion channels. We will also expand upon the role DUBs play in receptor sorting at the multivesicular body to determine whether a receptor is recycled or trafficked to the lysosome for degradation. Finally, we will briefly discuss how the DUBs implicated in these processes may contribute to the pathogenesis of a range of diseases, and thus the potential these have as therapeutic targets.


Assuntos
Endocitose/fisiologia , Ubiquitina/metabolismo , Animais , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA