Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38700092

RESUMO

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and ßIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced ßIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Neurônios , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/citologia , Diferenciação Celular/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Linhagem Celular Tumoral , Transdução de Sinais
2.
Front Cell Infect Microbiol ; 14: 1352267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774629

RESUMO

Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.


Assuntos
Microbioma Gastrointestinal , Pré-Eclâmpsia , Pré-Eclâmpsia/microbiologia , Humanos , Gravidez , Feminino , Disbiose/microbiologia , Probióticos , Animais
3.
Aging Cell ; 23(6): e14155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38529808

RESUMO

Parkinson's disease (PD) is characterised by progressive loss of dopaminergic (DA) neurons from the substantia nigra (SN) and α-synuclein (αSyn) accumulation. Age is the biggest risk factor for PD and may create a vulnerable pre-parkinsonian state, but the drivers of this association are unclear. It is known that ageing increases αSyn expression in DA neurons and that this may alter molecular processes that are central to maintaining nigrostriatal integrity. To model this, adult female Sprague-Dawley rats received a unilateral intranigral injection of adeno-associated viral (AAV) vector carrying wild-type human αSyn (AAV-αSyn) or control vector (AAV-Null). AAV-αSyn induced no detrimental effects on motor behaviour, but there was expression of human wild-type αSyn throughout the midbrain and ipsilateral striatum at 20 weeks post-surgery. Microarray analysis revealed that the gene most-upregulated in the ipsilateral SN of the AAV-αSyn group was the SKI Family Transcriptional Corepressor 1 (SKOR1). Bioenergetic state analysis of mitochondrial function found that SKOR1 overexpression reduced the maximum rate of cellular respiration in SH-SY5Y cells. Furthermore, experiments in SH-SY5Y cells revealed that SKOR1 overexpression impaired neurite growth to the same extent as αSyn, and inhibited BMP-SMAD-dependent transcription, a pathway that promotes DA neuronal survival and growth. Given the normal influence of ageing on DA neuron loss in human SN, the extent of αSyn-induced SKOR1 expression may influence whether an individual undergoes normal nigrostriatal ageing or reaches a threshold for prodromal PD. This provides new insight into mechanisms through which ageing-related increases in αSyn may influence molecular mechanisms important for the maintenance of neuronal integrity.


Assuntos
Envelhecimento , Ratos Sprague-Dawley , Substância Negra , alfa-Sinucleína , Animais , Feminino , Humanos , Ratos , Envelhecimento/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Substância Negra/patologia , Regulação para Cima
4.
J Clin Endocrinol Metab ; 109(5): 1275-1284, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38035802

RESUMO

CONTEXT: Gestational diabetes mellitus (GDM) is a complex obstetric condition affecting localized glucose metabolism, resulting in systemic metabolic dysfunction. OBJECTIVE: This cross-sectional study aimed to explore visceral adipose tissue (VAT) as an integral contributor to GDM, focusing on elucidating the specific contribution of obesity and GDM pathology to maternal outcomes. METHODS: Fifty-six nulliparous pregnant women were recruited, including normal glucose tolerant (NGT) (n = 30) and GDM (n = 26) participants. Participants were subgrouped as nonobese (BMI <30 kg/m2) or obese (BMI ≥30 kg/m2). Metabolic markers in circulation, VAT, and placenta were determined. Morphological analysis of VAT and immunoblotting of the insulin signaling cascade were performed. RESULTS: GDM participants demonstrated hyperinsulinemia and elevated homeostatic model assessment for insulin resistance (HOMA-IR) scores relative to NGT participants. The GDM-obese subgroup had significant VAT adipocyte hypoplasia relative to NGT-nonobese tissue. GDM-obese VAT had significantly lower insulin receptor substrate (IRS)-2 expression, with elevated ser312 phosphorylation of IRS-1, relative to NGT-nonobese. GDM-obese participants had significantly elevated circulating leptin levels and placental adipsin secretion, while GDM-nonobese participants had elevated circulating adipsin levels with reduced placental adiponectin secretion. CONCLUSION: These findings suggest that GDM-obese pregnancy is specifically characterized by inadequate VAT remodeling and dysfunctional molecular signaling, which contribute to insulin resistance and hinder metabolic health.

5.
J Reprod Immunol ; 161: 104171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029485

RESUMO

BACKGROUND: Maternal hyperglycaemia has a significant impact on placental metabolism and mitochondrial function. The NLRP3 inflammasome is responsive to endogenous signals of mitochondrial dysfunction. We tested our hypothesis that mitochondrial dysfunction orchestrates activation of the NLRP3 inflammasome and contributes to inflammation in gestational diabetes mellitus (GDM). METHODS: Fasting blood, omental and placental tissue were collected on the day of caesarean section from nulliparous women with normal glucose tolerant (NGT) (n = 30) and GDM (n = 27) pregnancies. Cell-free mitochondrial DNA (cf-mtDNA) copy number was quantified by real-time PCR. M1-like (CD14+CD86+CD206-) and M2-like (CD14+CD86+CD206+) macrophage populations were characterized by flow cytometry. Immunoblotting for protein expression of NLRP3, ASC and caspase-1 was performed in maternal BMI and age-matched tissue samples. IL-1ß and IL-18 were measured by multiplex ELISA. Placental explants from GDM participants were cultured for 24 h with 1 mM L-ergothioneine (antioxidant) and 1 µM MCC950 (NLRP3 inhibitor). RESULTS: Cf-mtDNA copy numbers were significantly higher in GDM compared to NGT participants (p = 0.002). Placental populations of CD14+ (p = 0.02) and CD14+CD86+CD206- (p = 0.03) macrophages produced significantly increased levels of mitochondrial superoxide in GDM compared to NGT participants. Placental production of IL-18 (p = 0.04) was significantly increased in GDM. This increase in placental IL-18 was attenuated by treatment with 1 µM MCC950 (p = 0.0005), and 1 mM L-ergothioneine (p = 0.007). CONCLUSION: Placental inflammation is significantly increased in women with GDM. Furthermore, this increase may be initiated by elevated production of mitochondrial superoxide by macrophage subpopulations and orchestrated by the NLRP3 inflammasome. The mitochondrial antioxidant, L-ergothioneine, ameliorates NLRP3-induced placental inflammation in GDM, identifying a potential therapeutic role.


Assuntos
Diabetes Gestacional , Ergotioneína , Doenças Mitocondriais , Gravidez , Feminino , Humanos , Placenta/metabolismo , Interleucina-18/metabolismo , Ergotioneína/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Cesárea , Mitocôndrias , DNA Mitocondrial/metabolismo , Inflamação/metabolismo , Doenças Mitocondriais/metabolismo
6.
Mol Neurobiol ; 59(5): 2745-2757, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35175558

RESUMO

Parkinson's disease (PD) is neurodegenerative disorder with the pathological hallmarks of progressive degeneration of midbrain dopaminergic neurons from the substantia nigra (SN), and accumulation and spread of inclusions of aggregated α-synuclein (α-Syn). Since current PD therapies do not prevent neurodegeneration, there is a need to identify therapeutic targets that can prevent α-Syn-induced reductions in neuronal survival and neurite growth. We hypothesised that genes that are normally co-expressed with the α-Syn gene (SNCA), and whose co-expression pattern is lost in PD, may be important for protecting against α-Syn-induced dopaminergic degeneration, since broken correlations can be used as an index of functional misregulation. Gene co-expression analysis of the human SN showed that nuclear zinc finger HIT-type containing 1 (ZNHIT1) is co-expressed with SNCA and that this co-expression pattern is lost in PD. Overexpression of ZNHIT1 was found to increase deposition of the H2A.Z histone variant in SH-SY5Y cells, to promote neurite growth and to prevent α-Syn-induced reductions in neurite growth and cell viability. Analysis of ZNHIT1 co-expressed genes showed significant enrichment in genes associated with mitochondrial function. In agreement, bioenergetic state analysis of mitochondrial function revealed that ZNHIT1 increased cellular ATP synthesis. Furthermore, α-Syn-induced impairments in basal respiration, maximal respiration and spare respiratory capacity were not seen in ZNHIT1-overexpressing cells. These data show that ZNHIT1 can protect against α-Syn-induced degeneration and mitochondrial dysfunction, which rationalises further investigation of ZNHIT1 as a therapeutic target for PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Neurônios Dopaminérgicos/metabolismo , Humanos , Mitocôndrias/metabolismo , Neuritos/metabolismo , Doença de Parkinson/patologia , Fosfoproteínas , Substância Negra/patologia , alfa-Sinucleína/metabolismo
7.
Mol Neurobiol ; 59(1): 61-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34623600

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterised by the progressive degeneration of midbrain dopaminergic neurons, coupled with the intracellular accumulation of α-synuclein. Axonal degeneration is a central part of the pathology of PD. While the majority of PD cases are sporadic, some are genetic; the G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic form. The application of neurotrophic factors to protect dopaminergic neurons is a proposed experimental therapy. One such neurotrophic factor is growth differentiation factor (GDF)5. GDF5 is a dopaminergic neurotrophic factor that has been shown to upregulate the expression of a protein called nucleoside diphosphate kinase A (NME1). However, whether NME1 is neuroprotective in cell models of axonal degeneration of relevance to PD is unknown. Here we show that treatment with NME1 can promote neurite growth in SH-SY5Y cells, and in cultured dopaminergic neurons treated with the neurotoxin 6-hydroxydopamine (6-OHDA). Similar effects of NME1 were found in SH-SY5Y cells and dopaminergic neurons overexpressing human wild-type α-synuclein, and in stable SH-SY5Y cell lines carrying the G2019S LRRK2 mutation. We found that the effects of NME1 require the RORα/ROR2 receptors. Furthermore, increased NF-κB-dependent transcription was partially required for the neurite growth-promoting effects of NME1. Finally, a combined bioinformatics and biochemical analysis of the mitochondrial oxygen consumption rate revealed that NME1 enhanced mitochondrial function, which is known to be impaired in PD. These data show that recombinant NME1 is worthy of further study as a potential therapeutic agent for axonal protection in PD.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Degeneração Neural/prevenção & controle , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , alfa-Sinucleína/genética , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/patologia , Humanos , Degeneração Neural/genética , Neuritos/patologia , Crescimento Neuronal/efeitos dos fármacos
8.
Front Physiol ; 13: 1043481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714304

RESUMO

Introduction: Pre-eclampsia (PE) is a common and serious hypertensive disorder of pregnancy, which affects 3%-5% of first-time pregnancies and is a leading cause of maternal and neonatal morbidity and mortality. Prenatal exposure to PE is associated with an increased risk of neurodevelopmental disorders in affected offspring, although the cellular and molecular basis of this increased risk is largely unknown. Methods: Here, we examined the effects of exposure to maternal serum from women with PE or a healthy uncomplicated pregnancy on the survival, neurite growth and mitochondrial function of neuronally differentiated human SH-SY5Y neuroblastoma cells, which are commonly used to study neurite growth. Neurite growth and mitochondrial function are two strongly linked neurodevelopmental parameters in which alterations have been implicated in neurodevelopmental disorders. Following this, we investigated the pleiotropic cytokine interleukin-6 (IL-6) levels as a potential mechanism. Results: Cells exposed to 3% (v/v) PE serum for 72 h exhibited increased neurite growth (p < 0.05), which was validated in the human neural progenitor cell line, ReNcell® VM (p < 0.01), and mitochondrial respiration (elevated oxygen consumption rate (p < 0.05), basal mitochondrial respiration, proton leak, ATP synthesis, and non-mitochondrial respiration) compared to control serum-treated cells. ELISA analysis showed elevations in maternal IL-6 in PE sera (p < 0.05) and placental explants (p < 0.05). In support of this, SH-SY5Y cells exposed to 3% (v/v) PE serum for 24 h had increased phospho-STAT3 levels, which is a key intracellular mediator of IL-6 signalling (p < 0.05). Furthermore, treatment with anti-IL-6 neutralizing antibody blocked the effects of PE serum on neurite growth (p < 0.05), and exposure to IL-6 promoted neurite growth in SH-SY5Y cells (p < 0.01). Discussion: Collectively these data show elevated serum levels of maternal IL-6 in PE, which increases neurite growth and mitochondrial function in SH-SY5Y cells. This rationalizes the further study of IL-6 as a potential mediator between PE exposure and neurodevelopmental outcome in the offspring.

9.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923959

RESUMO

Gestational diabetes mellitus (GDM) is an obstetric complication that affects approximately 5-10% of all pregnancies worldwide. GDM is defined as any degree of glucose intolerance with onset or first recognition during pregnancy, and is characterized by exaggerated insulin resistance, a condition which is already pronounced in healthy pregnancies. Maternal hyperglycaemia ensues, instigating a 'glucose stress' response and concurrent systemic inflammation. Previous findings have proposed that both placental and visceral adipose tissue play a part in instigating and mediating this low-grade inflammatory response which involves altered infiltration, differentiation and activation of maternal innate and adaptive immune cells. The resulting maternal immune dysregulation is responsible for exacerbation of the condition and a further reduction in maternal insulin sensitivity. GDM pathology results in maternal and foetal adverse outcomes such as increased susceptibility to diabetes mellitus development and foetal neurological conditions. A clearer understanding of how these pathways originate and evolve will improve therapeutic targeting. In this review, we will explore the existing findings describing maternal immunological adaption in GDM in an attempt to highlight our current understanding of GDM-mediated immune dysregulation and identify areas where further research is required.


Assuntos
Diabetes Gestacional/patologia , Inflamação/patologia , Feminino , Humanos , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Gravidez
10.
Mol Neurobiol ; 58(6): 2734-2756, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33492643

RESUMO

Preeclampsia (PE) is a common and serious hypertensive disorder of pregnancy that occurs in approximately 3-5% of first-time pregnancies and is a well-known leading cause of maternal and neonatal mortality and morbidity. In recent years, there has been accumulating evidence that in utero exposure to PE acts as an environmental risk factor for various neurodevelopmental disorders, particularly autism spectrum disorder and ADHD. At present, the mechanism(s) mediating this relationship are uncertain. In this review, we outline the most recent evidence implicating a causal role for PE exposure in the aetiology of various neurodevelopmental disorders and provide a novel interpretation of neuroanatomical alterations in PE-exposed offspring and how these relate to their sub-optimal neurodevelopmental trajectory. We then postulate that inflammation and oxidative stress, two prominent features of the pathophysiology of PE, are likely to play a major role in mediating this association. The increased inflammation in the maternal circulation, placenta and fetal circulation in PE expose the offspring to both prenatal maternal immune activation-a risk factor for neurodevelopmental disorders, which has been well-characterised in animal models-and directly higher concentrations of pro-inflammatory cytokines, which adversely affect neuronal development. Similarly, the exaggerated oxidative stress in the mother, placenta and foetus induces the placenta to secrete factors deleterious to neurons, and exposes the fetal brain to directly elevated oxidative stress and thus adversely affects neurodevelopmental processes. Finally, we describe the interplay between inflammation and oxidative stress in PE, and how both systems interact to potentially alter neurodevelopmental trajectory in exposed offspring.


Assuntos
Inflamação/etiologia , Inflamação/patologia , Sistema Nervoso/crescimento & desenvolvimento , Estresse Oxidativo , Pré-Eclâmpsia/patologia , Animais , Feminino , Feto/patologia , Humanos , Sistema Nervoso/fisiopatologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Gravidez
11.
Artigo em Inglês | MEDLINE | ID: mdl-33042016

RESUMO

Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.


Assuntos
Doenças Cardiovasculares/metabolismo , Diabetes Gestacional/metabolismo , Células Endoteliais/metabolismo , Pré-Eclâmpsia/metabolismo , Tecido Adiposo/metabolismo , Animais , Fatores de Risco Cardiometabólico , Feminino , Humanos , Resistência à Insulina , Placenta/metabolismo , Gravidez , Transdução de Sinais
12.
Eur J Obstet Gynecol Reprod Biol ; 251: 60-65, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32480181

RESUMO

OBJECTIVE: Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance which is diagnosed during pregnancy and poses considerable health risks for mother and child. Maternal body mass index (BMI) correlates with GDM diagnosis and the pathophysiology of this link may be explained through oxidative stress and mitochondrial dysfunction. In this study we investigate if mitochondrial dysfunction is evident in GDM by measuring cell free mitochondrial DNA concentration and determine if a potential relationship exists between maternal mitochondrial function and GDM diagnosis. STUDY DESIGN: Plasma samples were taken at 20 weeks' gestation from women who subsequently developed GDM (n = 44) and matched with women with uncomplicated pregnancies (n = 85) as controls. Control group 1 was matched by maternal age and BMI (n = 41) to GDM cases, while control group 2 was matched by maternal age alone (n = 44). Prediction potential was determined by binary regression analysis. Statistical analysis was performed on SPSS Statistics v25. RESULTS: Binary regression analysis showed a statistically significant association between mtDNA concentration and GDM diagnosis (p = 0.032) in GDM cases versus control group 2, indicating that GDM patients have higher circulating mtDNA concentrations relative to healthy control patients. The lack of statistical significance in control group 1 suggests that BMI may be linked to mitochondrial function in GDM patients. CONCLUSION: These results demonstrate a potential pathogenic role for mitochondrial dysfunction in GDM, with BMI presenting as a likely physiological mediator.


Assuntos
Diabetes Gestacional , Índice de Massa Corporal , Criança , Feminino , Idade Gestacional , Humanos , Idade Materna , Mitocôndrias , Gravidez
13.
Nutr Res Rev ; 33(2): 190-217, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051057

RESUMO

Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.


Assuntos
Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Suplementos Nutricionais , Ergotioneína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Actinobacteria/química , Animais , Fungos/química , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo
14.
Hypertension ; 75(2): 561-568, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865793

RESUMO

Preeclampsia is a multifactorial hypertensive disorder of pregnancy founded on abnormal placentation, and the resultant placental ischemic microenvironment is thought to play a crucial role in its pathophysiology. Placental ischemia because of fluctuations in the delivery of oxygen results in oxidative stress, and recent evidence suggests that mitochondrial dysfunction may be a prime mediator. However, large clinical trials of therapeutic antioxidants such as vitamins C and E for the treatment of preeclampsia have been disappointing. L-(+)-ergothioneine (ERG)-an unusual amino acid betaine derived from histidine-has important cytoprotective and antioxidant properties under conditions of high oxidative stress. In this study, we investigated the potential therapeutic effects of administration of ERG in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. ERG (25 mg/kg per day) was administered to rats on gestational day 11. On gestational day 14, RUPP surgery was performed, and on gestational day 19, blood pressure (mean arterial pressure) and fetal growth were measured. Production of mitochondria-specific H2O2 was analyzed in vivo in kidney samples. ERG ameliorated the hypertension (129±3 versus 115±4 mm Hg; P=0.01; n=8) and significantly increased pup weight in RUPP rats. ERG also significantly decreased circulating levels of antiangiogenic sFlt-1 (soluble fms-like tyrosine kinase-1) in RUPP rats (1367±245 pg/mL; P=0.04). Mitochondria-specific H2O2 (0.022±0.003 versus 0.029±0.001; MitoP/B ratio, n=3; P=0.05) was also significantly decreased in kidney tissue in RUPP rats treated with ERG. These data support the potential use of ERG for the treatment of preeclampsia.


Assuntos
Ergotioneína/farmacologia , Pré-Eclâmpsia/tratamento farmacológico , Prenhez , Fluxo Sanguíneo Regional/efeitos dos fármacos , Útero/irrigação sanguínea , Animais , Antioxidantes/farmacologia , Biomarcadores/sangue , Biomarcadores/urina , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos , Ratos Sprague-Dawley , Útero/fisiopatologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Oxid Med Cell Longev ; 2019: 1670759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885773

RESUMO

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


Assuntos
Morte Celular/genética , Chalconas/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia , Estresse Oxidativo
16.
Sci Rep ; 9(1): 5920, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30976066

RESUMO

Preeclampsia is a multisystemic disorder leading to the development of a placental ischemic microenvironment with a resultant increase in oxidative stress. There is evidence that mitochondrial dysfunction and the innate immune system both play a role in the pathophysiology of this disease. Mitochondrial DAMPs such as mtDNA bind specific pattern recognition receptors such as Toll-like receptor 9 (TLR9) on the endosomal surface of immune cells, in particular neutrophils, subsequently activating them and triggering an innate response. We hypothesised that the exaggerated innate immune response seen in preeclampsia is provoked by dysfunctional mitochondria. Here we provide evidence that TLR9 activity is significantly increased at time of disease in women with preeclampsia. Furthermore, we show activation of neutrophil markers, Calprotectin, Myeloperoxidase (MPO), and IL-8 are significantly increased at time of disease compared to uncomplicated pregnancies. This research supports a potential role of TLR9 activation of an innate immune response evident in preeclampsia which may possibly be initially triggered by dysfunctional mitochondria.


Assuntos
Imunidade Inata/imunologia , Mitocôndrias/patologia , Neutrófilos/imunologia , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Receptor Toll-Like 9/metabolismo , Adulto , Estudos de Casos e Controles , Citocinas/metabolismo , DNA Mitocondrial/metabolismo , Feminino , Seguimentos , Idade Gestacional , Humanos , Mitocôndrias/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Prognóstico , Estudos Prospectivos , Transdução de Sinais , Receptor Toll-Like 9/genética
17.
Int J Dev Neurosci ; 77: 69-76, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30391740

RESUMO

Pre-eclampsia is a leading cause of maternal death and maternal and perinatal morbidity. Whilst the clinical manifestations of pre-eclampsia often occur in late pregnancy, the molecular events leading into the onset of this disease are thought to originate in early pregnancy and result in insufficient placentation. Although the causative molecular basis of pre-eclampsia remains poorly understood, maternal inflammation is recognised as a core clinical feature. While the adverse effects of pre-eclampsia on maternal and fetal health in pregnancy is well-recognised, the long-term impact of pre-eclampsia exposure on the risk of autism spectrum disorder (ASD) in exposed offspring is a topic of on-going debate. In particular, a recent systematic review has reported an association between exposure to pre-eclampsia and increased risk of ASD, however the molecular basis of this association is unknown. Here we review recent evidence for; 1) maternal inflammation in pre-eclampsia; 2) epidemiological evidence for alterations in neurodevelopmental outcomes in offspring exposed to pre-eclampsia; 3) long-term changes in the brains of offspring exposed to pre-eclampsia; and 4) how maternal inflammation may lead to altered neurodevelopmental outcomes in pre-eclampsia exposed offspring. Finally, we discuss the implications of this for the development of future studies in this field.


Assuntos
Transtorno do Espectro Autista/etiologia , Inflamação/complicações , Placenta/patologia , Pré-Eclâmpsia/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Transtorno do Espectro Autista/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA