Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585825

RESUMO

Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.

2.
Mol Ther Nucleic Acids ; 35(2): 102178, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38617974

RESUMO

Collagen VI-related dystrophies (COL6-RDs) are a group of severe, congenital-onset muscular dystrophies for which there is no effective causative treatment. Dominant-negative mutations are common in COL6A1, COL6A2, and COL6A3 genes, encoding the collagen α1, α2, and α3 (VI) chains. They act by incorporating into the hierarchical assembly of the three α (VI) chains and consequently produce a dysfunctional collagen VI extracellular matrix, while haploinsufficiency for any of the COL6 genes is not associated with disease. Hence, allele-specific transcript inactivation is a valid therapeutic strategy, although selectively targeting a pathogenic single nucleotide variant is challenging. Here, we develop a small interfering RNA (siRNA) that robustly, and in an allele-specific manner, silences a common glycine substitution (G293R) caused by a single nucleotide change in COL6A1 gene. By intentionally introducing an additional mismatch into the siRNA design, we achieved enhanced specificity toward the mutant allele. Treatment of patient-derived fibroblasts effectively reduced the levels of mutant transcripts while maintaining unaltered wild-type transcript levels, rescuing the secretion and assembly of collagen VI matrix by reducing the dominant-negative effect of mutant chains. Our findings establish a promising treatment approach for patients with the recurrent dominantly negative acting G293R glycine substitution.

3.
J Neuromuscul Dis ; 8(4): 633-645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33749658

RESUMO

BACKGROUND: Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging. OBJECTIVE: To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.7447A>G (p.Lys2483Glu). METHODS: We report the clinical and molecular findings in 16 patients: 12 patients carrying this variant in compound heterozygosity with another COL6A3 variant, and four homozygous patients. RESULTS: Patients carrying this variant in compound heterozygosity with a truncating COL6A3 variant exhibit a phenotype consistent with COL6-related myopathies (COL6-RM), with joint contractures, proximal weakness and skin abnormalities. All remain ambulant in adulthood and only three have mild respiratory involvement. Most show typical muscle MRI findings. In five patients, reduced collagen VI secretion was observed in skin fibroblasts cultures. All tested parents were unaffected heterozygous carriers. Conversely, two out of four homozygous patients did not present with the classical COL6-RM clinical and imaging findings. Collagen VI immunolabelling on cultured fibroblasts revealed rather normal secretion in one and reduced secretion in another. Muscle biopsy from one homozygous patient showed myofibrillar disorganization and rimmed vacuoles. CONCLUSIONS: In light of our results, we postulate that the COL6A3 variant c.7447A>G may act as a modulator of the clinical phenotype. Thus, in patients with a typical COL6-RM phenotype, a second variant must be thoroughly searched for, while for patients with atypical phenotypes further investigations should be conducted to exclude alternative causes. This works expands the clinical and molecular spectrum of COLVI-related myopathies.


Assuntos
Colágeno Tipo VI/genética , Distrofias Musculares/genética , Pró-Colágeno/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Musculares/genética , Mutação , Fenótipo , Adulto Jovem
4.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
5.
Am J Med Genet A ; 182(10): 2272-2283, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32776697

RESUMO

Synaptotagmins are integral synaptic vesicle membrane proteins that function as calcium sensors and regulate neurotransmitter release at the presynaptic nerve terminal. Synaptotagmin-2 (SYT2), is the major isoform expressed at the neuromuscular junction. Recently, dominant missense variants in SYT2 have been reported as a rare cause of distal motor neuropathy and myasthenic syndrome, manifesting with stable or slowly progressive distal weakness of variable severity along with presynaptic NMJ impairment. These variants are thought to have a dominant-negative effect on synaptic vesicle exocytosis, although the precise pathomechanism remains to be elucidated. Here we report seven patients of five families, with biallelic loss of function variants in SYT2, clinically manifesting with a remarkably consistent phenotype of severe congenital onset hypotonia and weakness, with variable degrees of respiratory involvement. Electrodiagnostic findings were consistent with a presynaptic congenital myasthenic syndrome (CMS) in some. Treatment with an acetylcholinesterase inhibitor pursued in three patients showed clinical improvement with increased strength and function. This series further establishes SYT2 as a CMS-disease gene and expands its clinical and genetic spectrum to include recessive loss-of-function variants, manifesting as a severe congenital onset presynaptic CMS with potential treatment implications.


Assuntos
Predisposição Genética para Doença , Hipotonia Muscular/genética , Síndromes Miastênicas Congênitas/genética , Sinaptotagmina II/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação de Sentido Incorreto/genética , Síndromes Miastênicas Congênitas/complicações , Síndromes Miastênicas Congênitas/patologia , Linhagem , Fenótipo , Transmissão Sináptica/genética
6.
Psychiatry Res Neuroimaging ; 296: 111028, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-31911320

RESUMO

Affective instability (i.e., large and frequent shifts in negative emotions) is a key emotion dysregulation symptom in emotional distress disorders and can be reliably and validly assessed using ambulatory assessment. However, no study has examined whether affective instability is associated with brain function and structure. Using multimodal neuroimaging and ambulatory assessment, we examined associations between functional activation and cortical structure with ambulatory-assessed affective instability in emotional distress disorders (n = 27). Increased daily life-affective instability was associated with decreased neural activation on an emotion regulation task in a left inferior parietal region consistently associated with emotion regulation. Daily-life affective instability was also associated with hypogyria in this same left inferior parietal region, with hypogyria extending into additional posterior parietal regions. This study found evidence that daily-life affective instability was associated with both functionstructure of the posterior parietal cortex, a key attentional control region involved in emotion regulation.


Assuntos
Emoções/fisiologia , Lobo Parietal/patologia , Lobo Parietal/fisiopatologia , Angústia Psicológica , Atenção/fisiologia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA