Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 80(17): 8501-10, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26292956

RESUMO

Organoboron-mediated regioselective glycosylations were employed as key steps in the total synthesis of a branched pentasaccharide from a saponin natural product. The ability to use organoboron activation to differentiate OH groups in an unprotected glycosyl acceptor, followed by substrate-controlled reactions of the obtained disaccharide, enabled a streamlining of the synthesis relative to a protective group-based approach. This study revealed a matching/mismatching effect of the relative configuration of donor and acceptor on the efficiency of a regioselective glycosylation reaction, a problem that was solved through the development of a novel boronic acid-amine copromoter system for glycosyl acceptor activation.


Assuntos
Compostos de Boro/química , Caryophyllaceae/química , Oligossacarídeos/síntese química , Saponinas/química , Sequência de Carboidratos , Glicosilação , Oligossacarídeos/química
2.
Carbohydr Res ; 381: 112-22, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24095943

RESUMO

The reversible covalent interactions between organoboron compounds and diols have been applied for many years in carbohydrate chemistry. They form the basis of efficient methods for the detection of carbohydrates, and applications in cellular imaging and glycoprotein analysis are beginning to emerge. The interactions are also of widespread utility in carbohydrate synthesis: depending upon the coordination geometry at boron, either protection or activation of a bound diol motif may be achieved. This review article uses recent examples to illustrate the breadth of applications of organoboron compounds in carbohydrate chemistry.


Assuntos
Compostos de Boro/química , Carboidratos/análise , Glicoproteínas/análise , Glicômica , Estrutura Molecular
3.
J Am Chem Soc ; 133(27): 10559-67, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21667941

RESUMO

Studies of a series of urea-based anion receptors designed to probe the potential for anion recognition through combinations of hydrogen and halogen bonding are presented. Proton- and fluorine-NMR spectroscopy indicates that the two interactions act in concert to achieve binding of certain anions, a conclusion supported by computational studies. Replacement of the halogen-bond donating iodine substituent by fluorine (which does not participate in halogen bonding) enables estimation of the contribution of this interaction to the free energy of anion binding. Evidence for attractive contacts between anions and electron-deficient arenes arising from the use of perfluoroarene-functionalized ureas as control receptors is also discussed. The magnitude of the free energy contribution of halogen bonding depends both on the geometric features of the group linking the hydrogen- and halogen-bond donor groups and on the identity of the bound anion. The results are interpreted in relation to fundamental features of the halogen-bonding interaction, including its directionality and unusual preference for halides over oxoanions. Cooperation between two distinct noncovalent interactions leads to unusual effects on receptor selectivity, a result of fundamental differences in the interactions of halogen- and hydrogen-bond donor groups with anions.


Assuntos
Halogênios/química , Hidrogênio/química , Ureia/química , Ânions/química , Flúor/química , Ligação de Hidrogênio , Iodo/química , Espectroscopia de Ressonância Magnética
4.
Dalton Trans ; (16): 2926-39, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19352520

RESUMO

Polyfunctional hydrazone ligands with multidentate terminal donor groups offer metal ions many donor choices, and the coordination outcome depends mainly on the identity of the metal ion. Co(ii) and Ni(ii) prefer to adopt largely undistorted, six-coordinate geometries, while Cu(ii) can easily adapt to a variety of coordination situations (e.g. CN 4-6), and will optimize its coordination number and stereochemistry based on all the available donors. Ni(ii) and Co(ii) form simple [2 x 2] [M(4)-(micro(2)-O)(4)] square grids with such ditopic hydrazone ligands, and ignore other coordination options, while Cu(ii) tries to bind to all the available donors, and forms extended and 2D structures based on linked Cu(ii) triads rather than grids. Ni(ii) is also reluctant to compromise its desire to maximize its crystal field stabilization energy (CFSE) by binding to 'weak' ligands, and with a tetratopic pyrazole bis-hydrazone ligand it ignores the oxygen donors in favour of nitrogen, forming a novel trinuclear, triangular cluster. Also, reaction of a linear Ni(ii)(3) complex of a tetratopic pyridazine bis-hydrazone ligand with NiN(6) coordination spheres with Cu(ii), leads exclusively to a square Cu(12) grid based complex, and complete displacement of nickel. Structural and magnetic properties are highlighted, and metal-ligand interactions are discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA