Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702845

RESUMO

Betaine has important roles in preimplantation mouse embryos, including as an organic osmolyte that functions in cell volume regulation in the early preimplantation stages and as a donor to the methyl pool in blastocysts. The origin of betaine in oocytes and embryos was largely unknown. Here, we found that betaine was present from the earliest stage of growing oocytes. Neither growing oocytes nor early preantral follicles could take up betaine, but antral follicles were able to transport betaine and supply the enclosed oocyte. Betaine is synthesized by choline dehydrogenase, and female mice lacking Chdh did not have detectable betaine in their oocytes or early embryos. Supplementing betaine in their drinking water restored betaine in the oocyte only when supplied during the final stages of antral follicle development but not earlier in folliculogenesis. Together with the transport results, this implies that betaine can only be exogenously supplied during the final stages of oocyte growth. Previous work showed that the amount of betaine in the oocyte increases sharply during meiotic maturation due to upregulated activity of choline dehydrogenase within the oocyte. This betaine present in mature eggs was retained after fertilization until the morula stage. There was no apparent role for betaine uptake via the SIT1 (SLC6A20) betaine transporter that is active at the 1- and 2-cell stages. Instead, betaine was apparently retained because its major route of efflux, the volume-sensitive organic osmolyte - anion channel, remained inactive, even though it is expressed and capable of being activated by a cell volume increase.

2.
Cells ; 12(20)2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37887344

RESUMO

Early preimplantation mouse embryos are sensitive to increased osmolarity, which can block their development. To overcome this, they accumulate organic osmolytes to maintain cell volume. The main organic osmolyte used by early mouse embryos is glycine. Glycine is transported during the mature egg and 1-cell to 4-cell embryo stages by a transporter identified as GLYT1, encoded by the Slc6a9 gene. Here, we have produced an oocyte-specific knockout of Slc6a9 by crossing mice that have a segment of the gene flanked by LoxP elements with transgenic mice expressing iCre driven by the oocyte-specific Gdf9 promoter. Slc6a9 null oocytes failed to develop glycine transport activity during meiotic maturation. However, females with these oocytes were fertile. When enclosed in their cumulus-oocyte complex, Slc6a9 null oocytes could accumulate glycine via GLYT1 transport in their coupled cumulus cells, which may support female fertility in vivo. In vitro, embryos derived from Slc6a9 null oocytes displayed a clear phenotype. While glycine rescued complete preimplantation development of wild type embryos from increased osmolarity, embryos derived from null oocytes failed to develop past the 2-cell stage even with glycine. Thus, Slc6a9 is required for glycine transport and protection against increased osmolarity in mouse eggs and early embryos.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Oócitos , Animais , Feminino , Camundongos , Blastocisto/metabolismo , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Oócitos/metabolismo , Pressão Osmótica
3.
Biol Reprod ; 109(5): 601-617, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37669129

RESUMO

Numerous reference genes for use with quantitative reverse transcription polymerase chain reaction (RT-qPCR) have been used for oocytes, eggs, and preimplantation embryos. However, none are actually suitable because of their large variations in expression between developmental stages. To address this, we produced a standardized and merged RNA sequencing (RNAseq) data set by combining multiple publicly available RNAseq data sets that spanned mouse GV oocytes, MII eggs, and 1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stage embryos to identify transcripts with essentially constant expression across all stages. Their expression was then measured using RT-qPCR, with which they did not exhibit constant expression but instead revealed a fixed quantitative relationship between measurements by the two techniques. From this, the relative amounts of total messenger RNA at each stage from the GV oocyte through blastocyst stages were calculated. The quantitative relationship between measurements by RNAseq and RT-qPCR was then used to find genes predicted to have constant expression across stages in RT-qPCR. Candidates were assessed by RT-qPCR to confirm constant expression, identifying Hmgb3 and Rb1cc1 or the geometric mean of those plus either Taf1d or Cd320 as suitable reference genes. This work not only identified transcripts with constant expression from mouse GV oocytes to blastocysts, but also determined a general quantitative relationship between expression measured by RNAseq and RT-qPCR across stages that revealed the relative levels of total mRNA at each stage. The standardized and merged RNA data set should also prove useful in determining transcript expression in mouse oocytes, eggs, and embryos.


Assuntos
Transcrição Reversa , Transcriptoma , Camundongos , Animais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Blastocisto/metabolismo
4.
Zygote ; 30(5): 674-688, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35652653

RESUMO

The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) links the folate cycle that produces one-carbon units with the methionine cycle that converts these into S-adenosylmethionine (SAM), the universal methyl donor for almost all methyltransferases. Previously, MTHFR has been shown to be regulated by phosphorylation, which suppresses its activity. SAM levels have been shown to increase substantially soon after initiation of meiotic maturation of the mouse germinal vesicle (GV) stage oocyte and then decrease back to their original low level in mature second meiotic metaphase (MII) eggs. As MTHFR controls the entry of one-carbon units into the methionine cycle, it is a candidate regulator of the SAM levels in oocytes and eggs. Mthfr transcripts are expressed in mouse oocytes and preimplantation embryos and MTHFR protein is present at each stage. In mature MII eggs, the apparent molecular weight of MTHFR was increased compared with GV oocytes, which we hypothesized was due to increased phosphorylation. The increase in apparent molecular weight was reversed by treatment with lambda protein phosphatase (LPP), indicating that MTHFR is phosphorylated in MII eggs. In contrast, LPP had no effect on MTHFR from GV oocytes, 2-cell embryos, or blastocysts. MTHFR was progressively phosphorylated after initiation of meiotic maturation, reaching maximal levels in MII eggs before decreasing again after egg activation. As phosphorylation suppresses MTHFR activity, it is predicted that MTHFR becomes inactive during meiotic maturation and is minimally active in MII eggs, which is consistent with the reported changes in SAM levels during mouse oocyte maturation.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Animais , Carbono/metabolismo , Ácido Fólico/metabolismo , Meiose , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Metiltransferases/metabolismo , Camundongos , Oócitos/fisiologia , S-Adenosilmetionina/metabolismo
5.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128976

RESUMO

5,10-Methylenetetrahydrofolate reductase (MTHFR) is a crucial enzyme in the folate metabolic pathway with a key role in generating methyl groups. As MTHFR deficiency impacts male fertility and sperm DNA methylation, there is the potential for epimutations to be passed to the next generation. Here, we assessed whether the impact of MTHFR deficiency on testis morphology and sperm DNA methylation is exacerbated across generations in mouse. Although MTHFR deficiency in F1 fathers has only minor effects on sperm counts and testis weights and histology, F2 generation sons show further deterioration in reproductive parameters. Extensive loss of DNA methylation is observed in both F1 and F2 sperm, with >80% of sites shared between generations, suggestive of regions consistently susceptible to MTHFR deficiency. These regions are generally methylated during late embryonic germ cell development and are enriched in young retrotransposons. As retrotransposons are resistant to reprogramming of DNA methylation in embryonic germ cells, their hypomethylated state in the sperm of F1 males could contribute to the worsening reproductive phenotype observed in F2 MTHFR-deficient males, compatible with the intergenerational passage of epimutations.


Assuntos
Metilação de DNA , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Reprodução/fisiologia , Retroelementos/genética , Animais , Epigenômica , Pai , Feminino , Ácido Fólico/metabolismo , Células Germinativas , Homocistinúria , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espasticidade Muscular , Transtornos Psicóticos , Espermatozoides/metabolismo
7.
J Cell Physiol ; 235(11): 8585-8600, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32329057

RESUMO

Serine has roles in cell metabolism besides protein synthesis including providing one-carbon units to the folate cycle. Since growing mouse oocytes undergo a burst of folate accumulation as they near full size, we have investigated whether oocytes transport serine. Substantial serine transport appeared in oocytes near the end of their growth. Serine transport continued when oocytes resumed meiosis but ceased partway through first meiotic metaphase, remaining quiescent in mature eggs in second meiotic metaphase. The serine transporter was sodium dependent and inhibited by alanine, cysteine, leucine, or histidine, and had a Michaelis-Menten constant (Km ) for serine of 200 µM. Unexpectedly, exposing cumulus cell-enclosed oocytes to the physiological mediator of meiotic arrest, natriuretic peptide precursor Type C, substantially stimulated serine transport by the enclosed oocyte. Finally, in addition to transport by the oocyte itself, cumulus cells also supply serine to the enclosed oocyte via gap junctions within intact cumulus-oocyte complexes.


Assuntos
Células do Cúmulo/metabolismo , Meiose/fisiologia , Oócitos/metabolismo , Oogênese/fisiologia , Serina/metabolismo , Animais , Comunicação Celular/fisiologia , Junções Comunicantes/metabolismo , Metáfase/fisiologia , Camundongos
8.
J Biol Chem ; 292(33): 13784-13794, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28663368

RESUMO

Betaine (N,N,N-trimethylglycine) plays key roles in mouse eggs and preimplantation embryos first in a novel mechanism of cell volume regulation and second as a major methyl donor in blastocysts, but its origin is unknown. Here, we determined that endogenous betaine was present at low levels in germinal vesicle (GV) stage mouse oocytes before ovulation and reached high levels in the mature, ovulated egg. However, no betaine transport into oocytes was detected during meiotic maturation. Because betaine can be synthesized in mammalian cells via choline dehydrogenase (CHDH; EC 1.1.99.1), we assessed whether this enzyme was expressed and active. Chdh transcripts and CHDH protein were expressed in oocytes. No CHDH enzyme activity was detected in GV oocyte lysate, but CHDH became highly active during oocyte meiotic maturation. It was again inactive after fertilization. We then determined whether oocytes synthesized betaine and whether CHDH was required. Isolated maturing oocytes autonomously synthesized betaine in vitro in the presence of choline, whereas this failed to occur in Chdh-/- oocytes, directly demonstrating a requirement for CHDH for betaine accumulation in oocytes. Overall, betaine accumulation is a previously unsuspected physiological process during mouse oocyte meiotic maturation whose underlying mechanism is the transient activation of CHDH.


Assuntos
Betaína/metabolismo , Colina Desidrogenase/metabolismo , Oócitos/enzimologia , Oogênese , Regulação para Cima , Absorção Fisiológica , Animais , Blastocisto/citologia , Blastocisto/enzimologia , Blastocisto/metabolismo , Colina Desidrogenase/química , Colina Desidrogenase/genética , Cruzamentos Genéticos , Ativação Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Maturação in Vitro de Oócitos , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mórula/citologia , Mórula/enzimologia , Mórula/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Trítio , Zigoto/citologia , Zigoto/enzimologia , Zigoto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA