Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2710: 111-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688728

RESUMO

An increasing diversity of techniques investigating the biology of specific cell types and individual cells have elevated the importance of dissociation of viable cells from living tissues. Here we describe a method for the dissociation of single cells from samples of adult mouse olfactory mucosae, with an emphasis on maximizing yield of viable single cells from fluorescence-activated cell sorting. Yields are typically in the range of 80,000-150,000 viable cells per adult mouse.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Citometria de Fluxo
2.
Mol Neurobiol ; 59(5): 3233-3253, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35294731

RESUMO

We have shown that deficiency of neutral sphingomyelinase 2 (nSMase2), an enzyme generating the sphingolipid ceramide, improves memory in adult mice. Here, we performed sphingolipid and RNA-seq analyses on the cortex from 10-month-old nSMase2-deficient (fro/fro) and heterozygous (+ /fro) mice. fro/fro cortex showed reduced levels of ceramide, particularly in astrocytes. Differentially abundant transcripts included several functionally related groups, with decreases in mitochondrial oxidative phosphorylation and astrocyte activation transcripts, while axon guidance and synaptic transmission and plasticity transcripts were increased, indicating a role of nSMase2 in oxidative stress, astrocyte activation, and cognition. Experimentally induced oxidative stress decreased the level of glutathione (GSH), an endogenous inhibitor of nSMase2, and increased immunolabeling for ceramide in primary + /fro astrocytes, but not in fro/fro astrocytes. ß-galactosidase activity was lower in 5-week-old fro/fro astrocytes, indicating delayed senescence due to nSMase2 deficiency. In fro/fro cortex, levels of the senescence markers C3b and p27 and the proinflammatory cytokines interleukin 1ß, interleukin 6, and tumor necrosis factor α were reduced, concurrent with twofold decreased phosphorylation of their downstream target, protein kinase Stat3. RNA and protein levels of the ionotropic glutamate receptor subunit 2B (Grin2b/NR2B) were increased by twofold, which was previously shown to enhance cognition. This was consistent with threefold reduced levels of exosomes carrying miR-223-3p, a micro-RNA downregulating NR2B. In summary, our data show that nSMase2 deficiency prevents oxidative stress-induced elevation of ceramide and secretion of exosomes by astrocytes that suppress neuronal function, indicating a role of nSMase2 in the regulation of neuroinflammation and cognition.


Assuntos
Astrócitos , Esfingomielina Fosfodiesterase , Animais , Astrócitos/metabolismo , Ceramidas/metabolismo , Camundongos , Plasticidade Neuronal , Estresse Oxidativo , RNA/metabolismo , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
3.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35226060

RESUMO

Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.


Assuntos
Neurônios Receptores Olfatórios , Olfato , Animais , Células Receptoras Sensoriais , Olfato/fisiologia
4.
J Alzheimers Dis ; 85(4): 1481-1494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958025

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive age-dependent disorder whose risk is affected by genetic factors. Better models for investigating early effects of risk factors such as apolipoprotein E (APOE) genotype are needed. OBJECTIVE: To determine whether APOE genotype produces neuropathologies in an AD-susceptible neural system, we compared effects of human APOE ɛ3 (E3) and APOE ɛ4 (E4) alleles on the mouse olfactory epithelium. METHODS: RNA-Seq using the STAR aligner and DESeq2, immunohistochemistry for activated caspase-3 and phosphorylated histone H3, glucose uptake after oral gavage of 2-[1,2-3H (N)]-deoxy-D-glucose, and Seahorse Mito Stress tests on dissociated olfactory mucosal cells. RESULTS: E3 and E4 olfactory mucosae show 121 differentially abundant mRNAs at age 6 months. These do not indicate differences in cell type proportions, but effects on 17 odorant receptor mRNAs suggest small differences in tissue development. Ten oxidoreductases mRNAs important for cellular metabolism and mitochondria are less abundant in E4 olfactory mucosae but this does not translate into differences in cellular respiration. E4 olfactory mucosae show lower glucose uptake, characteristic of AD susceptibility and consistent with greater expression of the glucose-sensitive gene, Asns. Olfactory sensory neuron apoptosis is unaffected at age 6 months but is greater in E4 mice at 10 months. CONCLUSION: Effects of human APOE alleles on mouse olfactory epithelium phenotype are apparent in early adulthood, and neuronal loss begins to increase by middle age (10 months). The olfactory epithelium is an appropriate model for the ability of human APOE alleles to modulate age-dependent effects associated with the progression of AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Mucosa Olfatória/patologia , Olfato/genética , Adulto , Alelos , Animais , Apolipoproteínas E , Encéfalo/patologia , Feminino , Genótipo , Humanos , Masculino , Camundongos
5.
Chem Senses ; 45(9): 805-822, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33075817

RESUMO

Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.


Assuntos
Cílios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Animais , Axônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Neurogênese/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato , Sinapses/metabolismo
6.
J Neurosci ; 40(37): 7043-7053, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32801155

RESUMO

The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.


Assuntos
Odorantes , Percepção Olfatória , Olfato , Compostos de Sulfidrila/química , Poluição por Fumaça de Tabaco , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Compostos de Sulfidrila/farmacologia , Produtos do Tabaco
7.
Chem Senses ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427281

RESUMO

Natural odors are mixtures of volatile chemicals (odorants). Odors are encoded as responses of distinct subsets of the hundreds of odorant receptors and trace amine-associated receptors expressed monogenically by olfactory sensory neurons. This is an elegantly simple mechanism for differentially encoding odors but it is susceptible to complex dose-response relationships and interactions between odorants at receptors, which may help explain olfactory phenomena such as mixture suppression, synthetic versus elemental odor processing, and poorly predictable perceptual outcomes of new odor mixtures. In this study in vivo tests in freely behaving mice confirm evidence of a characteristic receptor response pattern consisting of a few receptors with strong responses and a greater number of weakly responding receptors. Odorant receptors responsive to an odor are often unrelated and widely divergent in sequence, even when the odor consists of a single species of odorant. Odorant receptor response patterns to a citrus odor broaden with concentration. Some highly sensitive receptors respond only to a low concentration but others respond in proportion to concentration, a feature that may be critical for concentration-invariant perception. Other tests find evidence of interactions between odorants in vivo. All of the odorant receptor responses to a moderate concentration of the fecal malodor indole are suppressed by a high concentration of the floral odorant, α-ionone. Such suppressive effects are consistent with prior evidence that odorant interactions at individual odorant receptors are common.

8.
Mol Cell Neurosci ; 104: 103469, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061665

RESUMO

The perception of odors relies on combinatorial codes consisting of odorant receptor (OR) response patterns to encode odor identity. Modulation of these patterns by odorant interactions at ORs potentially explains several olfactory phenomena: mixture suppression, unpredictable sensory outcomes, and the perception of odorant mixtures as unique objects. We determined OR response patterns to 4 odorants and 3 binary mixtures in vivo in mice, identifying 30 responsive ORs. These patterns typically had a few strongly responsive ORs and a greater number of weakly responsive ORs. ORs responsive to an odorant were often unrelated sequences distributed across several OR subfamilies. Mixture responses predicted pharmacological interactions between odorants, which were tested in vitro by heterologous expression of ORs in cultured cells, providing independent evidence confirming odorant agonists for 13 ORs and identifying both suppressive and additive effects. This included 11 instances of antagonism of ORs by an odorant, 1 instance of additive responses to a binary mixture, 1 instance of suppression of a strong agonist by a weak agonist, and the discovery of an inverse agonist for an OR. Interactions between odorants at ORs are common even when the odorants are not known to interact perceptually in humans, and in some cases interactions at mouse ORs correlate with the ability of humans to perceive an odorant in a mixture.


Assuntos
Odorantes , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Aldeídos/farmacologia , Animais , Células Cultivadas , Feminino , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Receptores Olfatórios/efeitos dos fármacos , Pentanóis/farmacologia , Receptores Odorantes/agonistas , Receptores Odorantes/antagonistas & inibidores
9.
Chem Senses ; 42(8): 611-624, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525560

RESUMO

Activity-dependent processes are important to olfactory sensory neurons (OSNs) in several ways, such as cell survival and the specificity of axonal convergence. The identification of activity-dependent mRNAs has contributed to our understanding of OSN axon convergence, but has revealed surprisingly little about other processes. Published studies of activity-dependent mRNAs in olfactory mucosae overlap poorly, but by combining these agreements with meta-analysis of existing data we identify 443 mRNAs that respond to methods that alter OSN activity. Three hundred and fifty of them are expressed in mature OSNs, consistent with the expectation that activity-dependent responses are cell autonomous and driven by odor stimulation. Many of these mRNAs encode proteins that function at presynaptic terminals or support electrical activity, consistent with hypotheses linking activity dependence to synaptic plasticity and energy conservation. The lack of agreement between studies is due largely to underpowered experiments. In addition, methods used to alter OSN activity are susceptible to indirect or off-target effects. These effects deserve greater attention, not only to rigorously identify OSN mRNAs that respond to altered OSN activity, but also because these effects are of significant interest in their own right. For example, the mRNAs of some sustentacular cell enzymes believed to function in odorant clearance (Cyp2a4 and Cyp2g1) are sensitive to unilateral naris occlusion used to reduce odorant stimulation of the ipsilateral olfactory epithelium. Also problematic are odorant receptor mRNAs, which show little agreement across studies and are susceptible to differences in frequency of expression that masquerade as activity-dependent changes in mRNA abundance.


Assuntos
Regulação da Expressão Gênica , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Animais , Humanos , RNA Mensageiro/análise , RNA Mensageiro/genética
10.
eNeuro ; 3(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822500

RESUMO

A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression.


Assuntos
Proteínas com Homeodomínio LIM/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Feminino , Imunofluorescência , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Proteínas com Homeodomínio LIM/genética , Masculino , Camundongos Transgênicos , Análise em Microsséries , Mutação , Neurônios Receptores Olfatórios/citologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
11.
Mol Biol Cell ; 27(5): 788-98, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26764089

RESUMO

Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 µm(2)) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy.


Assuntos
DNA/metabolismo , Fibras Musculares Esqueléticas/patologia , Transcrição Gênica , Animais , Fenômenos Biomecânicos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Tamanho Celular , Feminino , Regulação da Expressão Gênica , Hipertrofia/patologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/patologia , Processamento Pós-Transcricional do RNA
12.
ChemoSense ; 16(2): 3-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942249
13.
J Neurosci ; 34(47): 15669-78, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411495

RESUMO

Our understanding of mammalian olfactory coding has been impeded by the paucity of information about the odorant receptors (ORs) that respond to a given odorant ligand in awake, freely behaving animals. Identifying the ORs that respond in vivo to a given odorant ligand from among the ∼1100 ORs in mice is intrinsically challenging but critical for our understanding of olfactory coding at the periphery. Here, we report an in vivo assay that is based on a novel gene-targeted mouse strain, S100a5-tauGFP, in which a fluorescent reporter selectively marks olfactory sensory neurons that have been activated recently in vivo. Because each olfactory sensory neuron expresses a single OR gene, multiple ORs responding to a given odorant ligand can be identified simultaneously by capturing the population of activated olfactory sensory neurons and using expression profiling methods to screen the repertoire of mouse OR genes. We used this in vivo assay to re-identify known eugenol- and muscone-responsive mouse ORs. We identified additional ORs responsive to eugenol or muscone. Heterologous expression assays confirmed nine eugenol-responsive ORs (Olfr73, Olfr178, Olfr432, Olfr610, Olfr958, Olfr960, Olfr961, Olfr913, and Olfr1234) and four muscone-responsive ORs (Olfr74, Olfr235, Olfr816, and Olfr1440). We found that the human ortholog of Olfr235 and Olfr1440 responds to macrocyclic ketone and lactone musk odorants but not to polycyclic musk odorants or a macrocyclic diester musk odorant. This novel assay, called the Kentucky in vivo odorant ligand-receptor assay, should facilitate the in vivo identification of mouse ORs for a given odorant ligand of interest.


Assuntos
Cicloparafinas/farmacologia , Eugenol/farmacologia , Receptores Odorantes/efeitos dos fármacos , Animais , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Odorantes , Receptores Acoplados a Proteínas G/fisiologia
14.
Chem Senses ; 39(5): 439-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692514

RESUMO

Activity-dependent survival of olfactory sensory neurons (OSNs) may allow animals to tune their olfactory systems to match their odor environment. Activity-dependent genes should play important roles in this process, motivating experiments to identify them. Both unilateral naris occlusion of mice for 6 days and genetic silencing of OSNs decreased S100A5, Lrrc3b, Kirrel2, Slc17a6, Rasgrp4, Pcp4l1, Plcxd3, and Kcnn2 while increasing Kirrel3. Naris occlusion also decreased Eml5, Ptprn, and Nphs1. OSN number was unchanged and stress-response mRNAs were unaffected after 6 days of naris occlusion. This leaves odor stimulation as the most likely cause of differential abundance of these mRNAs, but through a mechanism that is slow or indirect for most because 30-40 min of odor stimulation increased only 3 of 11 mRNAs decreased by naris occlusion: S100A5, Lrrc3b, and Kirrel2. Odorant receptor (OR) mRNAs were significantly more variable than the average mRNA, consistent with difficulty in reliably detecting changes in these mRNAs after 6 days of naris occlusion. One OR mRNA, Olfr855, was consistently decreased, however. These results suggest that the latency from the cessation of odor stimulation to effects on activity-dependent OSN survival must be a week or more in juvenile mice.


Assuntos
Regulação da Expressão Gênica , Neurônios Receptores Olfatórios/fisiologia , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Inativação Gênica , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obstrução Nasal/genética , Odorantes , Estimulação Física , RNA Mensageiro/genética , Receptores Odorantes/genética
15.
Mol Brain ; 6: 49, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24267470

RESUMO

BACKGROUND: Adult neurogenesis, fundamental for cellular homeostasis in the mammalian olfactory epithelium, requires major shifts in gene expression to produce mature olfactory sensory neurons (OSNs) from multipotent progenitor cells. To understand these dynamic events requires identifying not only the genes involved but also the cell types that express each gene. Only then can the interrelationships of the encoded proteins reveal the sequences of molecular events that control the plasticity of the adult olfactory epithelium. RESULTS: Of 4,057 differentially abundant mRNAs at 5 days after lesion-induced OSN replacement in adult mice, 2,334 were decreased mRNAs expressed by mature OSNs. Of the 1,723 increased mRNAs, many were expressed by cell types other than OSNs and encoded proteins involved in cell proliferation and transcriptional regulation, consistent with increased basal cell proliferation. Others encoded fatty acid metabolism and lysosomal proteins expressed by infiltrating macrophages that help scavenge debris from the apoptosis of mature OSNs. The mRNAs of immature OSNs behaved dichotomously, increasing if they supported early events in OSN differentiation (axon initiation, vesicular trafficking, cytoskeletal organization and focal adhesions) but decreasing if they supported homeostatic processes that carry over into mature OSNs (energy production, axon maintenance and protein catabolism). The complexity of shifts in gene expression responsible for converting basal cells into neurons was evident in the increased abundance of 203 transcriptional regulators expressed by basal cells and immature OSNs. CONCLUSIONS: Many of the molecular changes evoked during adult neurogenesis can now be ascribed to specific cellular events in the OSN cell lineage, thereby defining new stages in the development of these neurons. Most notably, the patterns of gene expression in immature OSNs changed in a characteristic fashion as these neurons differentiated. Initial patterns were consistent with the transition into a neuronal morphology (neuritogenesis) and later patterns with neuronal homeostasis. Overall, gene expression patterns during adult olfactory neurogenesis showed substantial similarity to those of embryonic brain.


Assuntos
Envelhecimento/metabolismo , Neurogênese/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/inervação , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/citologia , Bulbo Olfatório/cirurgia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-22869108

RESUMO

Crustacean crustacyanin proteins are linked to the production and modification of carapace colour, with direct implications for fitness and survival. Here, the structural and functional properties of the two recombinant crustacyanin subunits H(1) and H(2) from the American lobster Homarus americanus are reported. The two subunits are structurally highly similar to the corresponding natural apo crustacyanin CRTC and CRTA subunits from the European lobster H. gammarus. Reconstitution studies of the recombinant crustacyanin proteins H(1) and H(2) with astaxanthin reproduced the bathochromic shift of 85-95 nm typical of the natural crustacyanin subunits from H. gammarus in complex with astaxanthin. Moreover, correlations between the presence of crustacyanin genes in crustacean species and the resulting carapace colours with the spectral properties of the subunits in complex with astaxanthin confirmed this genotype-phenotype linkage.


Assuntos
Proteínas de Transporte/química , Nephropidae/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes/química , Alinhamento de Sequência
17.
J Comp Neurol ; 520(12): 2608-29, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22252456

RESUMO

The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes.


Assuntos
Diferenciação Celular/genética , Genômica/métodos , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/genética , Transcriptoma
18.
J Neurosci Res ; 88(15): 3243-56, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20882566

RESUMO

Neurogenesis of projection neurons requires that axons be initiated, extended, and connected. Differences in the expression of axon growth and guidance genes must drive these events, but comprehensively characterizing these differences in a single neuronal type has not been accomplished. Guided by a catalog of gene expression in olfactory sensory neurons (OSNs), in situ hybridization and immunohistochemistry revealed that Cxcr4 and Dbn1, two axon initiation genes, marked the developmental transition from basal progenitor cells to immature OSNs in the olfactory epithelium. The CXCR4 immunoreactivity of these nascent OSNs overlapped partially with markers of proliferation of basal progenitor cells and partially with immunoreactivity for GAP43, the canonical marker of immature OSNs. Intracellular guidance cue signaling transcripts Ablim1, Crmp1, Dypsl2, Dpysl3, Dpysl5, Gap43, Marcskl1, and Stmn1-4 were specific to, or much more abundant in, the immature OSN layer. Receptors that mediate axonal inhibition or repulsion tended to be expressed in both immature and mature OSNs (Plxna1, Plxna4, Nrp2, Efna5) or specifically in mature OSNs (Plxna3, Unc5b, Efna3, Epha5, Epha7), although some were specific to immature OSNs (Plxnb1, Plxnb2, Plxdc2, Nrp1). Cell adhesion molecules were expressed either by both immature and mature OSNs (Dscam, Ncam1, Ncam2, Nrxn1) or solely by immature OSNs (Chl1, Nfasc1, Dscaml1). Given the loss of intracellular signaling protein expression, the continued expression of guidance cue receptors in mature OSNs is consistent with a change in the role of these receptors, perhaps to sending signals back to the cell body and nucleus.


Assuntos
Axônios/ultraestrutura , Neurogênese/genética , Neuropeptídeos/genética , Mucosa Olfatória/crescimento & desenvolvimento , Células Receptoras Sensoriais/citologia , Animais , Diferenciação Celular/genética , Imunofluorescência , Perfilação da Expressão Gênica , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR4/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
19.
Mol Cell Neurosci ; 45(4): 398-407, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20692344

RESUMO

Uncx (Phd1, Chx4) is a paired homeobox transcription factor gene. It and its probable functional partners, Tle co-repressors, were expressed by neurally-fated basal progenitor cells and olfactory sensory neurons of the olfactory epithelium. Uncx expression was rare in olfactory epithelia of Ascl1(-/-) mice, but common in Neurog1(-/-) mice. In Uncx(-/-) mice olfactory progenitor cell proliferation, progenitor cell number, olfactory sensory neuron survival, and Umodl1 and Kcnc4 mRNAs were reduced. Evidence of sensory neuron activity and functional connections to the olfactory bulb argue that decreased neuronal survival was not due to loss of trophic support or activity-dependent mechanisms. These data suggest that UNCX acts downstream of neural determination factors to broadly control transcriptional mechanisms used by neural progenitor cells to specify neural phenotypes.


Assuntos
Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Imunofluorescência , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
20.
Chem Senses ; 35(6): 447-57, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20460312

RESUMO

Odor discrimination requires differential expression of odor detectors. In fact, olfactory input to the brain is organized in units (glomeruli) innervated only by olfactory sensory neurons that express the same odorant receptor (OR). Therefore, discriminatory capacity is maximized if each sensory neuron expresses only one allele of a single OR gene, a postulate sometimes canonized as the "one neuron-one receptor rule." OR gene choice appears to result from a hierarchy of processes: differential availability of the alleles of each OR gene, zonal exclusion (or selection), OR gene switching during the initiation of OR gene transcription, and OR-dependent feedback to solidify the choice of one OR gene. The mechanisms underlying these processes are poorly understood, though a few elements are known or suspected. For example, the mechanism of activation of OR gene transcription appears to work in part through a few homeobox transcription factors (Emx2, and perhaps Lhx2) and the Ebf family of transcription factors. Further insights will probably come from several directions, but a promising hypothesis is that epigenetic mechanisms contribute to all levels of the hierarchical control of OR gene expression, especially the repressive events that seem to be necessary to achieve the singularity of OR gene choice.


Assuntos
Receptores Odorantes/genética , Animais , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA