Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 33(9): 4044-54, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447613

RESUMO

In the fruit fly Drosophila melanogaster, as in mammals, acute exposure to a high dose of ethanol leads to stereotypical behavioral changes beginning with increased activity, followed by incoordination, loss of postural control, and eventually, sedation. The mechanism(s) by which ethanol impacts the CNS leading to ethanol-induced sedation and the genes required for normal sedation sensitivity remain largely unknown. Here we identify the gene apontic (apt), an Myb/SANT-containing transcription factor that is required in the nervous system for normal sensitivity to ethanol sedation. Using genetic and behavioral analyses, we show that apt mediates sensitivity to ethanol sedation by acting in a small set of neurons that express Corazonin (Crz), a neuropeptide likely involved in the physiological response to stress. The activity of Crz neurons regulates the behavioral response to ethanol, as silencing and activating these neurons affects sedation sensitivity in opposite ways. Furthermore, this effect is mediated by Crz, as flies with reduced crz expression show reduced sensitivity to ethanol sedation. Finally, we find that both apt and crz are rapidly upregulated by acute ethanol exposure. Thus, we have identified two genes and a small set of peptidergic neurons that regulate sensitivity to ethanol-induced sedation. We propose that Apt regulates the activity of Crz neurons and/or release of the neuropeptide during ethanol exposure.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/citologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metamorfose Biológica/genética , Mutação/genética , Neurônios/metabolismo , Neuropeptídeos/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
2.
Fly (Austin) ; 5(3): 191-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21750412

RESUMO

The relationship between alcohol consumption, sensitivity, and tolerance is an important question that has been addressed in humans and rodent models. Studies have shown that alcohol consumption and risk of abuse may correlate with (1) increased sensitivity to the stimulant effects of alcohol, (2) decreased sensitivity to the depressant effects of alcohol, and (3) increased alcohol tolerance. However, many conflicting results have been observed. To complement these studies, we utilized a different organism and approach to analyze the relationship between ethanol consumption and other ethanol responses. Using a set of 20 Drosophila melanogaster mutants that were isolated for altered ethanol sensitivity, we measured ethanol-induced hyperactivity, ethanol sedation, sedation tolerance, and ethanol consumption preference. Ethanol preference showed a strong positive correlation with ethanol tolerance, consistent with some rodent and human studies, but not with ethanol hyperactivity or sedation. No pairwise correlations were observed between ethanol hyperactivity, sedation, and tolerance. The evolutionary conservation of the relationship between tolerance and ethanol consumption in flies, rodents, and humans indicates that there are fundamental biological mechanisms linking specific ethanol responses.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Intoxicação Alcoólica/genética , Depressores do Sistema Nervoso Central/farmacologia , Drosophila melanogaster/genética , Etanol/farmacologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Preferências Alimentares , Hipercinese/induzido quimicamente , Masculino , Fatores de Transcrição/metabolismo
3.
Dis Model Mech ; 4(3): 335-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21303840

RESUMO

Prenatal exposure to ethanol in humans results in a wide range of developmental abnormalities, including growth deficiency, developmental delay, reduced brain size, permanent neurobehavioral abnormalities and fetal death. Here we describe the use of Drosophila melanogaster as a model for exploring the effects of ethanol exposure on development and behavior. We show that developmental ethanol exposure causes reduced viability, developmental delay and reduced adult body size. We find that flies reared on ethanol-containing food have smaller brains and imaginal discs, which is due to reduced cell division rather than increased apoptosis. Additionally, we show that, as in mammals, flies reared on ethanol have altered responses to ethanol vapor exposure as adults, including increased locomotor activation, resistance to the sedating effects of the drug and reduced tolerance development upon repeated ethanol exposure. We have found that the developmental and behavioral defects are largely due to the effects of ethanol on insulin signaling; specifically, a reduction in Drosophila insulin-like peptide (Dilp) and insulin receptor expression. Transgenic expression of Dilp proteins in the larval brain suppressed both the developmental and behavioral abnormalities displayed by ethanol-reared adult flies. Our results thus establish Drosophila as a useful model system to uncover the complex etiology of fetal alcohol syndrome.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Transtornos do Espectro Alcoólico Fetal/metabolismo , Insulina/metabolismo , Transdução de Sinais , Adaptação Fisiológica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/crescimento & desenvolvimento , Etanol/toxicidade , Olho/efeitos dos fármacos , Olho/patologia , Feminino , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Larva/citologia , Larva/efeitos dos fármacos , Gravidez , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida
4.
Dev Biol ; 319(1): 68-77, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18485344

RESUMO

Regeneration is a vital process to maintain and repair tissues. Despite the importance of regeneration, the genes responsible for regenerative growth remain largely unknown. In Drosophila, imaginal disc regeneration can be induced either by fragmentation and in vivo culture or in situ by ubiquitous expression of wingless (wg/wnt1). Imaginal discs, like appendages in lower vertebrates, initiate regeneration by wound healing and proliferation at the wound site, forming a regeneration blastema. Most blastema cells maintain their disc-specific identity during regeneration; a few cells however, exhibit stem-cell like properties and switch to a different fate, in a phenomenon known as transdetermination. We identified three genes, regeneration (rgn), augmenter of liver regeneration (alr) and Matrix metalloproteinase-1 (Mmp1) expressed specifically in blastema cells during disc regeneration. Mutations in these genes affect both fragmentation- and wg-induced regeneration by either delaying, reducing or positioning the regeneration blastema. In addition to the modifications of blastema homeostasis, mutations in the three genes alter the rate of regeneration-induced transdetermination. We propose that these genes function in regenerative proliferation, growth and regulate cellular plasticity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Metaloproteinase 1 da Matriz/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Humanos , Metaloproteinase 1 da Matriz/genética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Regeneração , Alinhamento de Sequência
5.
Mech Dev ; 125(1-2): 67-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18036784

RESUMO

Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila melanogaster. We screened a collection of 97 recessive lethal P-lacZ enhancer trap lines for two primary criteria: first, the ability to dominantly modify wg-induced leg-to-wing transdetermination and second, for the activation or repression of the lacZ reporter gene in the blastema during disc regeneration. Of the 97 P-lacZ lines, we identified six genes (Krüppel-homolog-1, rpd3, jing, combgap, Aly and S6 kinase) that met both criteria. Five of these genes suppress, while one enhances, leg-to-wing transdetermination and therefore affects disc regeneration. Two of the genes, jing and rpd3, function in concert with chromatin remodeling proteins of the Polycomb Group (PcG) and trithorax Group (trxG) genes during Drosophila development, thus linking chromatin remodeling with the process of regeneration.


Assuntos
Drosophila melanogaster/fisiologia , Membro Posterior/fisiologia , Regeneração/genética , Animais , Drosophila melanogaster/genética , Imuno-Histoquímica , Hibridização In Situ , RNA Mensageiro/genética
6.
Int J Biochem Cell Biol ; 39(6): 1105-18, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17317270

RESUMO

Drosophila imaginal discs, the primordia of the adult fly appendages, are an excellent system for studying developmental plasticity. Cells in the imaginal discs are determined for their disc-specific fate (wingness, legness) during embryogenesis. Disc cells maintain their determination during larval development, a time of extensive growth and proliferation. Only when prompted to regenerate do disc cells exhibit lability in their determined identity. Regeneration in the disc is mediated by a localized region of cell division, known as the regeneration blastema. Most regenerating disc cells strictly adhere to their disc-specific identity; some cells however, switch fate in a phenomenon known as transdetermination. Similar regeneration and transdetermination events can be induced in situ by misexpression of the signaling molecule wingless. Recent studies indicate that the plasticity of disc cells during regeneration is associated with high morphogen activity and the reorganization of chromatin structure. Here we provide both a historical perspective of imaginal disc transdetermination, as well as discuss recent findings on how imaginal disc cells acquire developmental plasticity and multipotency. We also highlight how an understanding of imaginal disc transdetermination can enhance an understanding of developmental potency exhibited by stem cells.


Assuntos
Diferenciação Celular , Drosophila/citologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Células-Tronco/metabolismo
7.
Development ; 132(22): 5033-42, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16236766

RESUMO

Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling mechanisms and pattern formation, little is known about these same processes in the peripodial epithelium. We address this topic by focusing on morphogenesis, compartmental organization, proliferation and cell lineage of the PE in wing, second thoracic leg (T2) and eye discs. We show that a subset of peripodial cells in different imaginal discs undergo a cuboidal-to-squamous cell shape change at distinct larval stages. We find that this shape change requires both Hedgehog and Decapentapelagic, but not Wingless, signaling. Additionally, squamous morphogenesis shifts the anteroposterior (AP) compartment boundary in the peripodial epithelium relative to the stationary AP boundary in the disc proper. Finally, by lineage tracing cells in the PE, we surprisingly find that peripodial cells are displaced into the disc proper during larval development and this movement leads to Ubx repression.


Assuntos
Movimento Celular/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Animais , Contagem de Células , Linhagem da Célula/fisiologia , Proteínas de Drosophila/fisiologia , Extremidades/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Proteínas Hedgehog , Proteínas de Homeodomínio/fisiologia , Larva/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA