Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112932, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37585291

RESUMO

Synaptic zinc signaling modulates synaptic activity and is present in specific populations of cortical neurons, suggesting that synaptic zinc contributes to the diversity of intracortical synaptic microcircuits and their functional specificity. To understand the role of zinc signaling in the cortex, we performed whole-cell patch-clamp recordings from intratelencephalic (IT)-type neurons and pyramidal tract (PT)-type neurons in layer 5 of the mouse auditory cortex during optogenetic stimulation of specific classes of presynaptic neurons. Our results show that synaptic zinc potentiates AMPA receptor (AMPAR) function in a synapse-specific manner. We performed in vivo 2-photon calcium imaging of the same classes of neurons in awake mice and found that changes in synaptic zinc can widen or sharpen the sound-frequency tuning bandwidth of IT-type neurons but only widen the tuning bandwidth of PT-type neurons. These results provide evidence for synapse- and cell-type-specific actions of synaptic zinc in the cortex.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Receptores de AMPA/metabolismo , Zinco , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
2.
Sci Adv ; 9(9): eadd2058, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857451

RESUMO

Synaptic zinc ion (Zn2+) has emerged as a key neuromodulator in the brain. However, the lack of research tools for directly tracking synaptic Zn2+ in the brain of awake animals hinders our rigorous understanding of the physiological and pathological roles of synaptic Zn2+. In this study, we developed a genetically encoded far-red fluorescent indicator for monitoring synaptic Zn2+ dynamics in the nervous system. Our engineered far-red fluorescent indicator for synaptic Zn2+ (FRISZ) displayed a substantial Zn2+-specific turn-on response and low-micromolar affinity. We genetically anchored FRISZ to the mammalian extracellular membrane via a transmembrane (TM) ⍺ helix and characterized the resultant FRISZ-TM construct at the mammalian cell surface. We used FRISZ-TM to image synaptic Zn2+ in the auditory cortex in acute brain slices and awake mice in response to electric and sound stimuli, respectively. Thus, this study establishes a technology for studying the roles of synaptic Zn2+ in the nervous system.


Assuntos
Córtex Auditivo , Animais , Camundongos , Encéfalo , Membrana Celular , Corantes , Zinco , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA