Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Astron ; 8(5): 567-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798715

RESUMO

Jupiter's moon Europa has a predominantly water-ice surface that is modified by exposure to its space environment. Charged particles break molecular bonds in surface ice, thus dissociating the water to ultimately produce H2 and O2, which provides a potential oxygenation mechanism for Europa's subsurface ocean. These species are understood to form Europa's primary atmospheric constituents. Although remote observations provide important global constraints on Europa's atmosphere, the molecular O2 abundance has been inferred from atomic O emissions. Europa's atmospheric composition had never been directly sampled and model-derived oxygen production estimates ranged over several orders of magnitude. Here, we report direct observations of H2+ and O2+ pickup ions from the dissociation of Europa's water-ice surface and confirm these species are primary atmospheric constituents. In contrast to expectations, we find the H2 neutral atmosphere is dominated by a non-thermal, escaping population. We find 12 ± 6 kg s-1 (2.2 ± 1.2 × 1026 s-1) O2 are produced within Europa's surface, less than previously thought, with a narrower range to support habitability in Europa's ocean. This process is found to be Europa's dominant exogenic surface erosion mechanism over meteoroid bombardment.

2.
Nature ; 618(7964): 252-256, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286648

RESUMO

The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called 'coronal holes'. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating1,2 and interchange reconnection3-5. The coronal magnetic field near the solar surface is structured on scales associated with 'supergranulation' convection cells, whereby descending flows create intense fields. The energy density in these 'network' magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic 'switchbacks'7,8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts.

3.
Rev Sci Instrum ; 94(3): 035102, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012752

RESUMO

Measurements of lighter, low-energy charged particles in a laboratory beamline are complicated due to the influence of Earth's magnetic field. Rather than nulling out the Earth's magnetic field over the entire facility, we present a new way to correct particle trajectories using much more spatially limited Helmholtz coils. This approach is versatile and easy to incorporate in a wide range of facilities, including the existing ones, enabling measurements of low-energy charged particles in a laboratory beamline.

4.
Geophys Res Lett ; 49(9): e2022GL098111, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35864892

RESUMO

Water-group gas continuously escapes from Jupiter's icy moons to form co-orbiting populations of particles or neutral toroidal clouds. These clouds provide insights into their source moons as they reveal loss processes and compositions of their parent bodies, alter local plasma composition, and act as sources and sinks for magnetospheric particles. We report the first observations of H2 + pickup ions in Jupiter's magnetosphere from 13 to 18 Jovian radii and find a density ratio of H2 +/H+ = 8 ± 4%, confirming the presence of a neutral H2 toroidal cloud. Pickup ion densities monotonically decrease radially beyond 13 R J consistent with an advecting Europa-genic toroidal cloud source. From these observations, we derive a total H2 neutral loss rate from Europa of 1.2 ± 0.7 kg s-1. This provides the most direct estimate of Europa's H2 neutral loss rate to date and underscores the importance of both ion composition and neutral toroidal clouds in understanding satellite-magnetosphere interactions.

5.
Geophys Res Lett ; 49(9): e2022GL098741, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859815

RESUMO

Two distinct proton populations are observed over Jupiter's southern polar cap: a ∼1 keV core population and ∼1-300 keV dispersive conic population at 6-7 RJ planetocentric distance. We find the 1 keV core protons are likely the seed population for the higher-energy dispersive conics, which are accelerated from a distance of ∼3-5 RJ. Transient wave-particle heating in a "pressure-cooker" process is likely responsible for this proton acceleration. The plasma characteristics and composition during this period show Jupiter's polar-most field lines can be topologically closed, with conjugate magnetic footpoints connected to both hemispheres. Finally, these observations demonstrate energetic protons can be accelerated into Jupiter's magnetotail via wave-particle coupling.

6.
Space Sci Rev ; 218(4): 28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574273

RESUMO

Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs' mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon's Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to ∼ 47 au from the Sun or halfway to the heliospheric termination shock.

7.
J Geophys Res Space Phys ; 126(7): e2021JA029278, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35865412

RESUMO

Inside the magnetosheath, the IBEX-Hi energetic neutral atom (ENA) imager measures a distinct background count rate that is more than 10 times the typical heliospheric ENA emissions observed when IBEX is outside the magnetosheath. The source of this enhancement is magnetosheath ions of solar wind (SW) origin that deflect around the Earth's magnetopause (MP), scatter and neutralize from the anti-sunward part of the IBEX-Hi sunshade, and continue into the instrument as neutral atoms, behaving indistinguishably from ENAs emitted from distant plasma sources. While this background pollutes observations of outer heliospheric ENAs, it provides a clear signature of IBEX crossings over the magnetospheric boundaries. In this study, we investigate IBEX encounters with the magnetosheath boundaries using ∼8 yr of orbital data, and we determine the MP and bow shock (BS) locations derived from this background signal. We find 280 BS crossings from X GSE ∼ 11 Re to X GSE âˆ¼ -36 Re and 241 MP crossings from X GSE ∼ 6 Re to X GSE âˆ¼ -48 Re. We compare IBEX BS and MP crossing locations to those from IMP-8, Geotail, Cluster, Magion-4, ISEE, and Magnetospheric Multiscale Mission, and we find that IBEX crossing locations overlap with the BS and MP locations inferred from these other data sets. In this paper, we demonstrate how IBEX can be used to identify magnetosheath crossings, and extend boundary observations well past the terminator, thus further constraining future models of magnetosheath boundaries. Furthermore, we use the IBEX data set to show observational evidence of near-Earth magnetotail squeezing during periods of strong interplanetary magnetic field B y.

8.
Astrophys J Lett ; 911(2)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35198137

RESUMO

Direct sampling of interstellar neutral (ISN) atoms close to the Sun enables studies of the very local interstellar medium (VLISM) around the heliosphere. The primary population of ISN helium atoms has, until now, been assumed to reflect the pristine VLISM conditions at the heliopause. Consequently, the atoms observed at 1 au by the Interstellar Boundary Explorer (IBEX) were used to determine the VLISM temperature and velocity relative to the Sun, without accounting for elastic collisions with other species outside the heliopause. Here, we evaluate the effect of these collisions on the primary ISN helium population. We follow trajectories of helium atoms and track their collisions with slowed plasma and interstellar hydrogen atoms ahead of the heliopause. Atoms typically collide a few times in the outer heliosheath, and only ~1.5% of the atoms are not scattered at all. We use calculated differential cross sections to randomly choose scattering angles in these collisions. We estimate that the resulting primary ISN helium atoms at the heliopause are slowed down by ~0.45 km s-1 and heated by ~1100 K compared to the pristine VLISM. The resulting velocity distribution is asymmetric and shows an extended tail in the antisunward direction. Accounting for this change in the parameters derived from IBEX observations gives the Sun's relative speed of 25.85 km s-1 and temperature of 6400 K in the pristine VLISM. Finally, this paper serves as a source of the differential cross sections for elastic collisions with helium atoms.

9.
Geophys Res Lett ; 47(19): e2020GL089362, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33380756

RESUMO

Energetic neutral atoms (ENAs) created by charge-exchange of ions with the Earth's hydrogen exosphere near the subsolar magnetopause yield information on the distribution of plasma in the outer magnetosphere and magnetosheath. ENA observations from the Interstellar Boundary Explorer (IBEX) are used to image magnetosheath plasma and, for the first time, low-energy magnetospheric plasma near the magnetopause. These images show that magnetosheath plasma is distributed fairly evenly near the subsolar magnetopause; however, low-energy magnetospheric plasma is not distributed evenly in the outer magnetosphere. Simultaneous images and in situ observations from the Magnetospheric Multiscale (MMS) spacecraft from November 2015 (during the solar cycle declining phase) are used to derive the exospheric density. The ~11-17 cm-3 density at 10 RE is similar to that obtained previously for solar minimum. Thus, these combined results indicate that the exospheric density 10 RE from the Earth may have a weak dependence on solar cycle.

10.
Geophys Res Lett ; 47(16): e2020GL088188, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33132458

RESUMO

The Interstellar Boundary Explorer (IBEX) mission provides global energetic neutral atom (ENA) observations from the heliosphere and the Earth's magnetosphere, including spatial, temporal, and energy information. IBEX views the magnetosphere from the sides and almost always perpendicular to noon-midnight plane. We report the first ENA images of the energization process in the Earth's ion foreshock and magnetosheath regions. We show ENA flux and spectral images of the dayside magnetosphere with significant energization of ENA plasma sources (above ~2.7 keV) in the region magnetically connected to the Earth's bow shock (BS) in its quasi-parallel configuration of the interplanetary magnetic field (IMF). We also show that the ion energization increases gradually with decreasing IMF-BS angle, suggesting more efficient suprathermal ion acceleration deeper in the quasi-parallel foreshock.

11.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054693

RESUMO

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

12.
Science ; 367(6481)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32054694

RESUMO

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

13.
Astrophys J ; 888(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32020922

RESUMO

The effects of turbulence in the very local interstellar medium (VLISM) have been proposed by Giacalone & Jokipii (2015) to be important in determining the structure of the Interstellar Boundary Explorer (IBEX) ribbon via particle trapping by magnetic mirroring. We further explore this effect by simulating the motion of charged particles in a turbulent magnetic field superposed on a large-scale mean field, which we consider to be either spatially-uniform or a draped field derived from a 3D MHD simulation. We find that the ribbon is not double-peaked, in contrast to Giacalone & Jokipii (2015). However, the magnetic mirror force still plays an important role in trapping particles. Furthermore, the ribbon's thickness is considerably larger if the large-scale mean field is draped around the heliosphere. Voyager 1 observations in the VLISM show a turbulent field component that is stronger than previously thought, which we test in our simulation. We find that the inclusion of turbulent fluctuations at scales ≳100 au and power consistent with Voyager 1 observations produces a ribbon whose large-scale structure is inconsistent with IBEX observations. However, restricting fluctuations to <100 au produces a smoother ribbon structure similar to IBEX observations. Different turbulence realizations produce different small-scale features (≲10°) in the ribbon, but its large-scale structure is robust if the maximum fluctuation size is ≲50 au. This suggests that the magnetic field structure at scales ≲50 au is determined by the heliosphere-VLISM interaction and cannot entirely be represented by pristine interstellar turbulence.

14.
Nature ; 576(7786): 223-227, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802005

RESUMO

NASA's Parker Solar Probe mission1 recently plunged through the inner heliosphere of the Sun to its perihelia, about 24 million kilometres from the Sun. Previous studies farther from the Sun (performed mostly at a distance of 1 astronomical unit) indicate that solar energetic particles are accelerated from a few kiloelectronvolts up to near-relativistic energies via at least two processes: 'impulsive' events, which are usually associated with magnetic reconnection in solar flares and are typically enriched in electrons, helium-3 and heavier ions2, and 'gradual' events3,4, which are typically associated with large coronal-mass-ejection-driven shocks and compressions moving through the corona and inner solar wind and are the dominant source of protons with energies between 1 and 10 megaelectronvolts. However, some events show aspects of both processes and the electron-proton ratio is not bimodally distributed, as would be expected if there were only two possible processes5. These processes have been very difficult to resolve from prior observations, owing to the various transport effects that affect the energetic particle population en route to more distant spacecraft6. Here we report observations of the near-Sun energetic particle radiation environment over the first two orbits of the probe. We find a variety of energetic particle events accelerated both locally and remotely including by corotating interaction regions, impulsive events driven by acceleration near the Sun, and an event related to a coronal mass ejection. We provide direct observations of the energetic particle radiation environment in the region just above the corona of the Sun and directly explore the physics of particle acceleration and transport.

15.
Nature ; 576(7786): 228-231, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802006

RESUMO

The prediction of a supersonic solar wind1 was first confirmed by spacecraft near Earth2,3 and later by spacecraft at heliocentric distances as small as 62 solar radii4. These missions showed that plasma accelerates as it emerges from the corona, aided by unidentified processes that transport energy outwards from the Sun before depositing it in the wind. Alfvénic fluctuations are a promising candidate for such a process because they are seen in the corona and solar wind and contain considerable energy5-7. Magnetic tension forces the corona to co-rotate with the Sun, but any residual rotation far from the Sun reported until now has been much smaller than the amplitude of waves and deflections from interacting wind streams8. Here we report observations of solar-wind plasma at heliocentric distances of about 35 solar radii9-11, well within the distance at which stream interactions become important. We find that Alfvén waves organize into structured velocity spikes with duration of up to minutes, which are associated with propagating S-like bends in the magnetic-field lines. We detect an increasing rotational component to the flow velocity of the solar wind around the Sun, peaking at 35 to 50 kilometres per second-considerably above the amplitude of the waves. These flows exceed classical velocity predictions of a few kilometres per second, challenging models of circulation in the corona and calling into question our understanding of how stars lose angular momentum and spin down as they age12-14.

16.
Nature ; 576(7786): 237-242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802007

RESUMO

During the solar minimum, when the Sun is at its least active, the solar wind1,2 is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvénic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind3 of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain4; theories and observations suggest that they may originate at the tips of helmet streamers5,6, from interchange reconnection near coronal hole boundaries7,8, or within coronal holes with highly diverging magnetic fields9,10. The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfvén-wave turbulence11,12, heating by reconnection in nanoflares13, ion cyclotron wave heating14 and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe15 at 36 to 54 solar radii that show evidence of slow Alfvénic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities10,16 that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind.

17.
Astrophys J ; 879(2)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395988

RESUMO

In 2009, the Interstellar Boundary Explorer (IBEX) discovered the existence of a narrow "ribbon" of intense energetic neutral atom (ENA) emission projecting approximately a circle in the sky. It is believed that the ribbon originates from outside of the heliopause in radial directions ( r ) perpendicular to the local interstellar magnetic field (ISMF), B , i.e., B∙ r = 0. Swaczyna et al. (2016a) estimated the distance to the IBEX ribbon via the parallax method comparing the ribbon position observed from the opposite sides of the Sun. They found a parallax angle of 0.41° ± 0.15°, yielding a distance of 140 - 38 + 84 au to a portion of the ribbon at high ecliptic latitudes. In this study, we demonstrate how the apparent shift of the ribbon in the sky, and thus the apparent distance to the ribbon's source found via the parallax, depends on the transport effects of energetic ions outside the heliopause. We find that the apparent shift of the ribbon based on the "spatial retention" model with ion enhancement near B∙ r = 0, as proposed by Schwadron & McComas (2013), agrees with the parallax of the source region. Parallax is also accurate for a homogeneously-distributed emission source. However, if there is weak pitch angle scattering and ions propagate freely along the ISMF, the apparent shift is significantly smaller than the expected parallax because of the highly anisotropic source. In light of the results from Swaczyna et al. (2016a), our results indicate that the IBEX ribbon source is spatially confined.

18.
Astrophys J ; 876(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31359881

RESUMO

The leading hypothesis for the origin of the Interstellar Boundary Explorer (IBEX) "ribbon" of enhanced energetic neutral atoms (ENAs) from the outer heliosphere is the secondary ENA mechanism, whereby neutralized solar wind ions escape the heliosphere and, after several charge-exchange processes, may propagate back toward Earth primarily in directions perpendicular to the local interstellar magnetic field (ISMF). However, the physical processes governing the parent protons outside of the heliopause are still unconstrained. In this study, we compute the "spatial retention" model proposed by Schwadron & McComas (2013) in a 3D simulated heliosphere. In their model, pickup ions outside the heliopause that originate from the neutral solar wind are spatially-retained in a region of space via strong pitch angle scattering before becoming ENAs. We find that the ribbon's intensity and shape can vary greatly depending on the pitch angle scattering rate both inside and outside the spatial retention region, potentially contributing to the globally distributed flux. The draping of the ISMF around the heliopause creates an asymmetry in the average distance to the ribbon's source as well as an asymmetry in the ribbon's shape, i.e., radial cross section of ENA flux through the circular ribbon. The spatial retention model adds an additional asymmetry to the ribbon's shape due to the enhancement of ions in the retention region close to the heliopause. Finally, we demonstrate how the ribbon's structure observed at 1 au is affected by different instrument capabilities, and how the Interstellar Mapping and Acceleration Probe (IMAP) may observe the ribbon.

19.
Geophys Res Lett ; 46(1): 19-27, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30828110

RESUMO

We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.

20.
Phys Rev Lett ; 121(7): 075102, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169088

RESUMO

Nonthermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed that PUIs should be preferentially heated at quasiperpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H^{+}) PUIs at an interplanetary shock by the New Horizons' Solar Wind Around Pluto (SWAP) instrument at ∼34 au from the Sun. At this shock, H^{+} PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H^{+} SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H^{+} SWIs lose ∼85% of their energy flux across the shock and H^{+} PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H^{+} PUIs is approximately six times that of H^{+} SWIs. We find that H^{+} PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA