Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Commun ; 15(1): 2835, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565540

RESUMO

Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.


Assuntos
Neoplasias , Obesidade , Humanos , Animais , Camundongos , Monitorização Imunológica , Obesidade/etiologia , Dieta , Fatores de Risco
2.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385175

RESUMO

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Assuntos
Cardiomegalia , Fator de Crescimento de Fibroblastos 23 , Miocárdio , Insuficiência Renal Crônica , Animais , Fator de Crescimento de Fibroblastos 23/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Ativinas/metabolismo , Ativinas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Camundongos , Masculino , Fosforilação Oxidativa , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hormônio Paratireóideo/metabolismo
3.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37732182

RESUMO

Cell membranes consist of heterogeneous lipid domains that influence key cellular processes, including signal transduction, endocytosis, and electrical excitability. Using FRET-based fluorescent assays and fluorescence lifetime imaging microscopy (FLIM), we found that the dimension of cholesterol-enriched ordered membrane domains (OMD) varies considerably, depending on specific cell types. The size of OMDs is also dependent on cholesterol levels and the structure of lipid tails. Particularly, nociceptor dorsal root ganglion (DRG) neurons exhibit large OMDs. Disruption of OMDs potentiated action potential firing in nociceptor DRG neurons and facilitated opening of native hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. This increased neuronal firing could be partially due to an increased open probability of HCN channels. In animal models of neuropathic pain, we observed shrunken OMDs and relocalization of HCN channels from OMDs to disordered lipid domains. The gating effect on HCN channels was likely a result of direct modulation of the voltage sensor by OMDs. These findings suggest that disturbances in lipid domains play a role in regulating HCN channels within nociceptor DRG neurons, influencing pain modulation.

4.
Mo Med ; 120(5): 354-358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841572

RESUMO

Cardiac hypertrophy and heart failure involve a number of metabolic alterations. Human genetic mutations and murine genetic deficiency models of metabolic enzymes or transporters largely suggest that these alterations in metabolism are maladaptive and contribute to the cardiac remodeling and dysfunction. Here, we discuss insights into metabolic alterations identified in cardiac hypertrophy and failure, as well as dietary and pharmacologic therapies that counteract these metabolic alterations and have been shown to significantly improve heart failure.


Assuntos
Insuficiência Cardíaca , Humanos , Animais , Camundongos , Insuficiência Cardíaca/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Metabolismo Energético
5.
Mol Metab ; 77: 101808, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716594

RESUMO

OBJECTIVE: Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS: We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS: We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS: Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Camundongos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Ácido Pirúvico/farmacologia , Alanina Transaminase , Estresse Oxidativo , Oxirredução , Glutationa/metabolismo , Alanina/farmacologia
7.
Mol Metab ; 75: 101767, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429524

RESUMO

OBJECTIVE: Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS: A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS: Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION: Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Humanos , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Homeostase , Inflamação/metabolismo , Insulina/metabolismo , Insulina Regular Humana/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Gastro Hep Adv ; 2(4): 558-572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293574

RESUMO

BACKGROUND AND AIMS: Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS: Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS: Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION: Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.

9.
Biomolecules ; 13(2)2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36830630

RESUMO

Pyruvate sits at an important metabolic crossroads of intermediary metabolism. As a product of glycolysis in the cytosol, it must be transported into the mitochondrial matrix for the energy stored in this nutrient to be fully harnessed to generate ATP or to become the building block of new biomolecules. Given the requirement for mitochondrial import, it is not surprising that the mitochondrial pyruvate carrier (MPC) has emerged as a target for therapeutic intervention in a variety of diseases characterized by altered mitochondrial and intermediary metabolism. In this review, we focus on the role of the MPC and related metabolic pathways in the liver in regulating hepatic and systemic energy metabolism and summarize the current state of targeting this pathway to treat diseases of the liver. Available evidence suggests that inhibiting the MPC in hepatocytes and other cells of the liver produces a variety of beneficial effects for treating type 2 diabetes and nonalcoholic steatohepatitis. We also highlight areas where our understanding is incomplete regarding the pleiotropic effects of MPC inhibition.


Assuntos
Diabetes Mellitus Tipo 2 , Transportadores de Ácidos Monocarboxílicos , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Fígado/metabolismo
10.
Mol Metab ; 70: 101694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801448

RESUMO

OBJECTIVE: The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS: Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS: In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS: These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ratos , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Ratos Zucker , Aminoácidos de Cadeia Ramificada/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Glucose , Serina-Treonina Quinases TOR/metabolismo
11.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711589

RESUMO

The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.

12.
Redox Biol ; 59: 102557, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36508858

RESUMO

Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.


Assuntos
COVID-19 , Plasmalogênios , Humanos , Animais , Camundongos , Plasmalogênios/química , Plasmalogênios/metabolismo , Peroxidase/metabolismo , Ácido Hipocloroso/metabolismo , Células Endoteliais/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Proteínas/metabolismo , Neutrófilos/metabolismo , Aldeídos/metabolismo
15.
Cell Rep ; 39(4): 110733, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476997

RESUMO

Hepatic gluconeogenesis from amino acids contributes significantly to diabetic hyperglycemia, but the molecular mechanisms involved are incompletely understood. Alanine transaminases (ALT1 and ALT2) catalyze the interconversion of alanine and pyruvate, which is required for gluconeogenesis from alanine. We find that ALT2 is overexpressed in the liver of diet-induced obese and db/db mice and that the expression of the gene encoding ALT2 (GPT2) is downregulated following bariatric surgery in people with obesity. The increased hepatic expression of Gpt2 in db/db liver is mediated by activating transcription factor 4, an endoplasmic reticulum stress-activated transcription factor. Hepatocyte-specific knockout of Gpt2 attenuates incorporation of 13C-alanine into newly synthesized glucose by hepatocytes. In vivo Gpt2 knockdown or knockout in liver has no effect on glucose concentrations in lean mice, but Gpt2 suppression alleviates hyperglycemia in db/db mice. These data suggest that ALT2 plays a significant role in hepatic gluconeogenesis from amino acids in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Alanina/farmacologia , Alanina Transaminase/metabolismo , Aminoácidos/metabolismo , Animais , Diabetes Mellitus/metabolismo , Gluconeogênese , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Obesidade/metabolismo
16.
J Physiol ; 600(8): 1825-1837, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35307840

RESUMO

Hepatic stellate cells (HSCs) comprise a minor cell population in the liver but serve numerous critical functions in the normal liver and in response to injury. HSCs are primarily known for their activation upon liver injury and for producing the collagen-rich extracellular matrix in liver fibrosis. In the absence of liver injury, HSCs reside in a quiescent state, in which their main function appears to be the storage of retinoids or vitamin A-containing metabolites. Less appreciated functions of HSCs include amplifying the hepatic inflammatory response and expressing growth factors that are critical for liver development and both the initiation and termination of liver regeneration. Recent single-cell RNA sequencing studies have corroborated earlier studies indictaing that HSC activation involves a diverse array of phenotypic alterations and identified unique HSC populations. This review serves to highlight these many functions of HSCs, and to briefly describe the recent genetic tools that will help to thoroughly investigate the role of HSCs in hepatic physiology and pathology.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Células Cultivadas , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo
17.
Biomedicines ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35203575

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner-mitochondrial membrane protein complex that has emerged as a drug target for treating a variety of human conditions. A heterodimer of two proteins, MPC1 and MPC2, comprises the functional MPC complex in higher organisms; however, the structure of this complex, including the critical residues that mediate binding of pyruvate and inhibitors, remain to be determined. Using homology modeling, we identified a putative substrate-binding cavity in the MPC dimer. Three amino acid residues (Phe66 (MPC1) and Asn100 and Lys49 (MPC2)) were validated by mutagenesis experiments to be important for substrate and inhibitor binding. Using this information, we developed a pharmacophore model and then performed a virtual screen of a chemical library. We identified five new non-indole MPC inhibitors, four with IC50 values in the nanomolar range that were up to 7-fold more potent than the canonical inhibitor UK-5099. These novel compounds possess drug-like properties and complied with Lipinski's Rule of Five. They are predicted to have good aqueous solubility, oral bioavailability, and metabolic stability. Collectively, these studies provide important information about the structure-function relationships of the MPC complex and for future drug discovery efforts targeting the MPC.

18.
J Biol Chem ; 298(2): 101554, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973337

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner mitochondrial membrane complex that plays a critical role in intermediary metabolism. Inhibition of the MPC, especially in liver, may have efficacy for treating type 2 diabetes mellitus. Herein, we examined the antidiabetic effects of zaprinast and 7ACC2, small molecules which have been reported to act as MPC inhibitors. Both compounds activated a bioluminescence resonance energy transfer-based MPC reporter assay (reporter sensitive to pyruvate) and potently inhibited pyruvate-mediated respiration in isolated mitochondria. Furthermore, zaprinast and 7ACC2 acutely improved glucose tolerance in diet-induced obese mice in vivo. Although some findings were suggestive of improved insulin sensitivity, hyperinsulinemic-euglycemic clamp studies did not detect enhanced insulin action in response to 7ACC2 treatment. Rather, our data suggest acute glucose-lowering effects of MPC inhibition may be due to suppressed hepatic gluconeogenesis. Finally, we used reporter sensitive to pyruvate to screen a chemical library of drugs and identified 35 potentially novel MPC modulators. Using available evidence, we generated a pharmacophore model to prioritize which hits to pursue. Our analysis revealed carsalam and six quinolone antibiotics, as well as 7ACC1, share a common pharmacophore with 7ACC2. We validated that these compounds are novel inhibitors of the MPC and suppress hepatocyte glucose production and demonstrated that one quinolone (nalidixic acid) improved glucose tolerance in obese mice. In conclusion, these data demonstrate the feasibility of therapeutic targeting of the MPC for treating diabetes and provide scaffolds that can be used to develop potent and novel classes of MPC inhibitors.


Assuntos
Proteínas de Transporte de Ânions , Proteínas de Transporte da Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Obesidade , Quinolonas , Animais , Proteínas de Transporte de Ânions/antagonistas & inibidores , Proteínas de Transporte de Ânions/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Glucose/metabolismo , Camundongos , Camundongos Obesos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácido Pirúvico/metabolismo , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA