Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Integr Environ Assess Manag ; 20(2): 454-464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37527952

RESUMO

The pesticide registration process in North America, including the USA and Canada, involves conducting a risk assessment based on relatively conservative modeling to predict pesticide concentrations in receiving waterbodies. The modeling framework does not consider some commonly adopted best management practices that can reduce the amount of pesticide that may reach a waterbody, such as vegetative filter strips (VFS). Currently, VFS are being used by growers as an effective way to reduce off-site movement of pesticides, and they are being required or recommended on pesticide labels as a mitigation measure. Given the regulatory need, a pair of multistakeholder workshops were held in Raleigh, North Carolina, to discuss how to incorporate VFS into pesticide risk assessment and risk management procedures within the North American regulatory framework. Because the risk assessment process depends heavily on modeling, one key question was how to quantitatively incorporate VFS into the existing modeling approach. Key outcomes from the workshops include the following: VFS have proven effective in reducing pesticide runoff to surface waterbodies when properly located, designed, implemented, and maintained; Vegetative Filter Strip Modeling System (VFSMOD), a science-based and widely validated mechanistic model, is suitable for further vetting as a quantitative simulation approach to pesticide mitigation with VFS in current regulatory settings; and VFSMOD parametrization rules need to be developed for the North American aquatic exposure assessment. Integr Environ Assess Manag 2024;20:454-464. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Praguicidas/toxicidade , Praguicidas/análise , Medição de Risco , Gestão de Riscos , América do Norte , Canadá
4.
Environ Pollut ; 334: 122154, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419207

RESUMO

Air pollutants from poultry production, such as ammonia (NH3) and particulate matter (PM), have raised concerns due to their potential negative impacts on human health and the environment. Vegetative environmental buffers (VEBs), consisting of trees and/or grasses planted around poultry houses, have been investigated as a mitigation strategy for these emissions. Although previous research demonstrated that VEBs can reduce NH3 and PM emissions, these studies used a limited number of samplers and did not examine concentration profiles. Moreover, the differences between daytime and nighttime emissions have not been investigated. In this study, we characterized emission profiles from a commercial poultry house using an array with multiple sampling heights and explored the differences between daytime and nighttime NH3 and PM profiles. We conducted three sampling campaigns, each with ten sampling events (five daytime and five nighttime), at a VEB-equipped poultry production facility. NH3 and PM samples were collected downwind from the ventilation tunnel fans before, within, and after the VEB. Results showed that ground-level concentrations beyond the VEB decreased to 8.0% ± 2.7% for NH3, 13% ± 4% for TSP, 13% ± 4% for PM10, and 2.4% ± 2.8% for PM2.5 of the original concentrations from the exhaust tunnel fan, with greater reduction efficiency during daytime than nighttime. Furthermore, pollutant concentrations were positively intercorrelated. These findings will be valuable for developing more effective pollutant remediation strategies in poultry house emissions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Animais , Humanos , Material Particulado/análise , Aves Domésticas , Poluentes Atmosféricos/análise , Emissões de Veículos , Plantas , Amônia/análise , Monitoramento Ambiental/métodos
6.
Integr Environ Assess Manag ; 15(5): 714-725, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31144769

RESUMO

Pesticide regulation requires regulatory authorities to assess the potential ecological risk of pesticides submitted for registration, and most risk assessment schemes use a tiered testing and assessment approach. Standardized ecotoxicity tests, environmental fate studies, and exposure models are used at lower tiers and follow well-defined methods for assessing risk. If a lower tier assessment indicates that the pesticide may pose an ecological risk, higher tier studies using more environmentally realistic conditions or assumptions can be performed to refine the risk assessment and inform risk management options. However, there is limited guidance in the United States on options to refine an assessment and how the data will be incorporated into the risk assessment and risk management processes. To overcome challenges to incorporation of higher tier data into ecological risk assessments and risk management of pesticides, a workshop was held in Raleigh, North Carolina. Attendees included representatives from the United States Environmental Protection Agency, United States Department of Agriculture, National Oceanic and Atmospheric Administration, universities, commodity groups, consultants, nonprofit organizations, and the crop protection industry. Key recommendations emphasized the need for 1) more effective, timely, open communication among registrants, risk assessors, and risk managers earlier in the registration process to identify specific protection goals, address areas of potential concern where higher tier studies or assessments may be required, and if a higher tier study is necessary that there is agreement on study design; 2) minimizing the complexity of study designs while retaining high value to the risk assessment and risk management process; 3) greater transparency regarding critical factors utilized in risk management decisions with clearly defined protection goals that are operational; and 4) retrospective analyses of success-failure learnings on the acceptability of higher tier studies to help inform registrants on how to improve the application of such studies to risk assessments and the risk management process. Integr Environ Assess Manag 2019;15:714-725. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Agricultura/legislação & jurisprudência , Regulamentação Governamental , Guias como Assunto , Praguicidas/toxicidade , Gestão de Riscos/normas , Medição de Risco/normas , Estados Unidos
7.
J Agric Food Chem ; 66(31): 8231-8236, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957951

RESUMO

Ground-level ozone is formed when volatile organic compounds (VOCs) react with hydroxyl radicals and nitrogen oxides in the presence of ultraviolet light. Research has typically focused on the release and control of VOCs from hydrocarbon processing; however, agricultural activities, such as poultry production, can also be VOC sources and potentially contribute to ozone pollution. Therefore, this study examines the emission of C2-C6 VOCs from poultry houses and the use of a vegetative environmental buffer (VEB) as a potential mitigation strategy. Sampling campaigns were conducted at two farms, one with and one without a VEB. Of the nine compounds measured, methanol, ethanol, and acetone were the primary VOCs emitted and had the largest ozone-formation potential (OFP). A significantly larger decrease in the OFP for methanol as a function of distance from the poultry house was observed at the farm with the VEB as compared with at the farm without the VEB. These results suggest that besides being a visual barrier and particulate screen, VEBs can provide some control of VOCs emitted from poultry production.


Assuntos
Agricultura/métodos , Poluição do Ar/prevenção & controle , Abrigo para Animais , Plantas/metabolismo , Aves Domésticas/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Animais , Óxidos de Nitrogênio/química , Ozônio/análise , Ozônio/química , Raios Ultravioleta , Compostos Orgânicos Voláteis/química
8.
Environ Pollut ; 238: 10-16, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29529478

RESUMO

Poultry-emitted air pollutants, including particulate matter (PM) and ammonia, have raised concerns due to potential negative effects on human health and the environment. However, developing and optimizing remediation technologies requires a better understanding of air pollutant concentrations, the emission plumes, and the relationships between the pollutants. Therefore, we conducted ten field experiments to characterize PM (total suspended particulate [TSP], particulate matter less than 10 µm in aerodynamic diameter [PM10], and particulate matter less than 2.5 µm in aerodynamic diameter [PM2.5]) and ammonia emission-concentration profiles from a typical commercial poultry house. The emission factors of the poultry house, which were calculated using the concentrations and fan speed, were 0.66 (0.29-0.99) g NH3-N bird-1d-1 for ammonia, 52 (44-168) g d-1AU-1 (AU = animal unit = 500 kg) for TSP, 3.48 (1.16-9.03) g d-1AU-1 for PM10, and 0.07 (0.00-0.36) g d-1AU-1 for PM2.5. PM and ammonia emission concentrations decreased as distance from the fan increased. Although emission concentrations were similar in the daytime and nighttime, diurnal and nocturnal plume shapes were different due to the increased stability of the atmosphere at night. Particle size distribution analysis revealed that, at a given height, the percentage of PM10 and PM2.5 was consistent throughout the plume, indicating that the larger particles were not settling out of the airstream faster than the smaller particles. Overall, the direction of the measured air pollutant emission plumes was dominated by the tunnel fan ventilation airflow rate and direction instead of the ambient wind speed and direction. This is important because currently-available air dispersion models use ambient or modeled wind speed and direction as input parameters. Thus, results will be useful in evaluating dispersion models for ground-level, horizontally-released, point sources and in developing effective pollutant remediation strategies for emissions.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental/métodos , Abrigo para Animais , Material Particulado/análise , Poluição do Ar/análise , Animais , Humanos , Tamanho da Partícula , Aves Domésticas
9.
Environ Sci Pollut Res Int ; 25(9): 8735-8746, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29327189

RESUMO

Trichloroethylene (TCE) is a highly effective industrial degreasing agent and known carcinogen. It was frequently buried improperly in landfills and has subsequently become one of the most common groundwater and soil contaminants in the USA. A common strategy to remediate TCE-contaminated sites and to prevent movement of the TCE plumes into waterways is to construct biowalls which consist of biomaterials and amendments to enhance biodegradation. This approach was chosen to contain a TCE plume emanating from a closed landfill in Maryland. However, predicting the effectiveness of biowalls is often site specific. Therefore, we conducted an extensive series of batch reactor studies at 12 °C as opposed to the typical room temperature to examine biowall fill-material combinations including the effects of zero-valent iron (ZVI) and glycerol amendments. No detectable TCE was observed after several months in the laboratory study when using the unamended 4:3 mulch-to-compost combination. In the constructed biowall, this mixture reduced the upstream TCE concentration by approximately 90% and generated ethylene downstream, an indication of successful reductive dechlorination. However, the more toxic degradation product vinyl chloride (VC) was also detected downstream at levels approximately ten times greater than the maximum contaminant level. This indicates that incomplete degradation also occurred. In the laboratory, ZVI reduced VC formation. A hazard quotient was calculated for the landfill site with and without the biowall. The addition of the biowall decreased the hazard quotient by 88%.


Assuntos
Reatores Biológicos , Água Subterrânea/química , Folhas de Planta/química , Tricloroetileno/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Adsorção , Biodegradação Ambiental , Glicerol/química , Ferro/química , Cloreto de Vinil/análise
10.
Chemosphere ; 186: 151-159, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28772182

RESUMO

Electronic noses have been widely used in the food industry to monitor process performance and quality control, but use in wastewater and biosolids treatment has not been fully explored. Therefore, we examined the feasibility of an electronic nose to discriminate between treatment conditions of alkaline stabilized biosolids and compared its performance with quantitative analysis of key odorants. Seven lime treatments (0-30% w/w) were prepared and the resultant off-gas was monitored by GC-MS and by an electronic nose equipped with ten metal oxide sensors. A pattern recognition model was created using linear discriminant analysis (LDA) and principal component analysis (PCA) of the electronic nose data. In general, LDA performed better than PCA. LDA showed clear discrimination when single tests were evaluated, but when the full data set was included, discrimination between treatments was reduced. Frequency of accurate recognition was tested by three algorithms with Euclidan and Mahalanobis performing at 81% accuracy and discriminant function analysis at 70%. Concentrations of target compounds by GC-MS were in agreement with those reported in literature and helped to elucidate the behavior of the pattern recognition via comparison of individual sensor responses to different biosolids treatment conditions. Results indicated that the electronic nose can discriminate between lime percentages, thus providing the opportunity to create classes of under-dosed and over-dosed relative to regulatory requirements. Full scale application will require careful evaluation to maintain accuracy under variable process and environmental conditions.


Assuntos
Poluentes Atmosféricos/análise , Nariz Eletrônico , Monitoramento Ambiental/métodos , Odorantes/análise , Eliminação de Resíduos Líquidos , Compostos de Cálcio , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas/métodos , Óxidos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA