Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4393-4401, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329893

RESUMO

For the construction of hierarchical superstructures with biaxial anisotropic absorption, a newly synthesized diacetylene-functionalized bipyridinium is self-assembled to use an electron-accepting host for capturing and arranging guests. The formation of the donor-acceptor complex triggers an intermolecular charge transfer, leading to chromophore activation. Polarization-dependent multichroic thin films are prepared through a sequential process of single-coating, self-assembly, and topochemical polymerization of host-guest chromophores. Molecular packing structures constructed in the single-layer optical thin film possess orthogonal absorption axes for two different wavelengths. By tuning the linear polarization angle, the color of the optical thin film can be intentionally controlled. This single-layered multichroic film provides a new pathway for the development of anticounterfeiting and multiplexing encryptions.

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38251107

RESUMO

The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.

4.
Nat Commun ; 14(1): 4918, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582804

RESUMO

Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4 (LAFO) films on MgGa2O4 (MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.

5.
J Mater Chem B ; 11(29): 6823-6836, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358016

RESUMO

The outspread of bacterial pathogens causing severe infections and spreading rapidly, especially among hospitalized patients, is worrying and represents a global public health issue. Current disinfection techniques are becoming insufficient to counteract the spread of these pathogens because they carry multiple antibiotic-resistance genes. For this reason, a constant need exists for new technological solutions that rely on physical methods rather than chemicals. Nanotechnology support provides novel and unexplored opportunities to boost groundbreaking, next-gen solutions. With the help of plasmonic-assisted nanomaterials, we present and discuss our findings in innovative bacterial disinfection techniques. Gold nanorods (AuNRs) immobilized on rigid substrates are utilized as efficient white light-to-heat transducers (thermoplasmonic effect) for photo-thermal (PT) disinfection. The resulting AuNRs array shows a high sensitivity change in refractive index and an extraordinary capability in converting white light to heat, producing a temperature change greater than 50 °C in a few minute interval illumination time. Results were validated using a theoretical approach based on a diffusive heat transfer model. Experiments performed with a strain of Escherichia coli as a model microorganism confirm the excellent capability of the AuNRs array to reduce the bacteria viability upon white light illumination. Conversely, the E. coli cells remain viable without white light illumination, which also confirms the lack of intrinsic toxicity of the AuNRs array. The PT transduction capability of the AuNRs array is utilized to produce white light heating of medical tools used during surgical treatments, generating a temperature increase that can be controlled and is suitable for disinfection. Our findings are pioneering a new opportunity for healthcare facilities since the reported methodology allows non-hazardous disinfection of medical devices by simply employing a conventional white light lamp.


Assuntos
Escherichia coli , Nanotubos , Humanos , Desinfecção/métodos , Nanotubos/química , Luz , Ouro/química
6.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984126

RESUMO

Cholesteric liquid crystals (CLC) are molecules that can self-assemble into helicoidal superstructures exhibiting circularly polarized reflection. The facile self-assembly and resulting optical properties makes CLCs a promising technology for an array of industrial applications, including reflective displays, tunable mirror-less lasers, optical storage, tunable color filters, and smart windows. The helicoidal structure of CLC can be stabilized via in situ photopolymerization of liquid crystal monomers in a CLC mixture, resulting in polymer-stabilized CLCs (PSCLCs). PSCLCs exhibit a dynamic optical response that can be induced by external stimuli, including electric fields, heat, and light. In this review, we discuss the electro-optic response and potential mechanism of PSCLCs reported over the past decade. Multiple electro-optic responses in PSCLCs with negative or positive dielectric anisotropy have been identified, including bandwidth broadening, red and blue tuning, and switching the reflection notch when an electric field is applied. The reconfigurable optical response of PSCLCs with positive dielectric anisotropy is also discussed. That is, red tuning (or broadening) by applying a DC field and switching by applying an AC field were both observed for the first time in a PSCLC sample. Finally, we discuss the potential mechanism for the dynamic response in PSCLCs.

7.
J Colloid Interface Sci ; 639: 401-407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812855

RESUMO

HYPOTHESIS: Nanoparticles of various shapes and sizes can affect the optical properties and blue phase (BP) stabilization of BP liquid crystals (BPLCs). This is because nanoparticles, which are more compatible with the LC host, can be dispersed in both the double twist cylinder (DTC) and disclination defects in BPLCs. EXPERIMENTS: This study presents the first systematic study of the use of CdSe nanoparticles having various sizes and shapes (spheres, tetrapods and nanoplatelets) to stabilize BPLCs. Unlike previous studies using commercial nanoparticles (NPs), we custom-synthesized NPs with the same core and nearly identical long chain hydrocarbon ligand materials. Two LC hosts were used to investigate the NP effect on BPLCs. FINDINGS: The size and shape of nanomaterials greatly influence the interaction with LCs, and the dispersion of NPs in the LC medium affects the position of the BP reflection band and the stabilization of BPs. Spherical NPs were found to be more compatible with the LC medium than tetrapod shape and platelet shape NPs, resulting in a wider temperature range of BP and a redshift of the reflection band of BP. In addition, the inclusion of spherical NPs tuned the optical properties of BPLCs to a significant extent, whereas BPLCs with nanoplatelets displayed a limited influence on the optical properties and temperature window of BPs due to poor compatibility with LC hosts. The tunable optical behavior of BPLC as a function of the type and concentration of NPs has not been reported.

8.
Macromol Rapid Commun ; 44(5): e2200798, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639862

RESUMO

Inverse vulcanization techniques are used to fabricate thermodynamically stable, sulfur polymers. Sulfur-based polymers exhibit higher refractive indices and improved transparency in the mid-wave infrared region compared with most organic polymers. Herein, the postsynthetic modification of sulfur polymers created via inverse vulcanization to generate novel, inorganic/organic photoresists is discussed. Amine-containing sulfur resins are postfunctionalized with cross-linkable alkynes. The sulfur-based materials undergo rapid photo-crosslinking to generate patternable films within 10 min under UV irradiation (365 nm). The development of these resins enables sulfur polymers to be utilized in processes where spatial and hierarchical control is necessary. The generation of this class of materials also expands on sulfur-based organic polymer systems with optical applications.


Assuntos
Polímeros , Enxofre , Raios Ultravioleta
9.
Adv Mater ; 35(1): e2206764, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314392

RESUMO

Light manipulation strategies of nature have fascinated humans for centuries. In particular, structural colors are of considerable interest due to their ability to control the interaction between light and matter. Here, wrinkled photonic crystal papers (PCPs) are fabricated to demonstrate the consistent reflection of colors regardless of viewing angles. The nanoscale molecular self-assembly of a cholesteric liquid crystal (CLC) with a microscale corrugated surface is combined. Fully polymerizable CLC paints are uniaxially coated onto a wrinkled interpenetrating polymer network (IPN) substrate. Photopolymerization of the helicoidal nanostructures results in a flexible and free-standing PCP. The facile method of fabricating the wrinkled PCPs provides a scalable route for the development of novel chirophotonic materials with precisely controlled helical pitch and curvature dimensions. The reflection notch position of the flat PCP shifts to a lower wavelength when the viewing angle increased, while the selective reflection wavelength of wrinkled PCP is remained consistent regardless of viewing angles. The optical reflection of the 1D stripe-wrinkled PCP is dependent on the wrinkle direction. PCPs with different corrugated directions can be patterned to reduce the angular-dependent optical reflection of wrinkles. Furthermore, 2D wavy-wrinkled PCP is successfully developed that exhibit directionally independent reflection of color.

10.
Nanoscale ; 14(23): 8271-8280, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35586949

RESUMO

For the development of optically encryptable smart glass that can control the molecular alignment of liquid crystals (LCs), an azobenzene-based reactive molecule (ARM) capable of trans-cis photoisomerization is newly designed and synthesized. Photo-triggered LC-commandable smart glasses are successfully constructed by the surface functionalization technique using 3-aminopropyltriethoxysilane (APTMS) coupling agent and an ARM. The surface functionalization with the ARM is verified by spectroscopic analysis and various observations including changes in the wettability and surface morphology. Using the ARM-treated substrate, the LC command cell which can effectively switch the molecular orientation of nematic LC (E7) by the irradiation of UV and visible light is demonstrated. The results of optical investigation demonstrate the directional correlation between light and photoisomerization, revealing the tilt mechanism of azobenzene units. The capability to control the molecular orientation of LCs remotely and selectively allows the development of remote-controllable and encryptable smart glasses.

11.
Adv Mater ; 34(15): e2108790, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132680

RESUMO

Breaking time-reversal symmetry by introducing magnetic order, thereby opening a gap in the topological surface state bands, is essential for realizing useful topological properties such as the quantum anomalous Hall and axion insulator states. In this work, a novel topological antiferromagnetic (AFM) phase is created at the interface of a sputtered, c-axis-oriented, topological insulator/ferromagnet heterostructure-Bi2 Te3 /Ni80 Fe20 because of diffusion of Ni in Bi2 Te3 (Ni-Bi2 Te3 ). The AFM property of the Ni-Bi2 Te3 interfacial layer is established by observation of spontaneous exchange bias in the magnetic hysteresis loop and compensated moments in the depth profile of the magnetization using polarized neutron reflectometry. Analysis of the structural and chemical properties of the Ni-Bi2 Te3 layer is carried out using selected-area electron diffraction, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. These studies, in parallel with first-principles calculations, indicate a solid-state chemical reaction that leads to the formation of Ni-Te bonds and the presence of topological antiferromagnetic (AFM) compound NiBi2 Te4 in the Ni-Bi2 Te3 interface layer. The Neél temperature of the Ni-Bi2 Te3 layer is ≈63 K, which is higher than that of typical magnetic topological insulators (MTIs). The presented results provide a pathway toward industrial complementary metal-oxide-semiconductor (CMOS)-process-compatible sputtered-MTI heterostructures, leading to novel materials for topological quantum devices.

12.
Mater Horiz ; 8(5): 1561-1569, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846464

RESUMO

A self-crosslinkable side-chain liquid crystal polysiloxane containing cyanostilbene (Si-CSM) was newly synthesized for the development of a new generation of flexible optical paints. The photoisomerization of the cyanostilbene moiety at the molecular level was transferred and amplified to the phase transition of Si-CSM, resulting in changes in the macroscopic optical properties of the Si-CSM thin film. The self-crosslinking reaction between Si-H groups in the Si-CSM polymer backbone caused the self-crosslinked Si-CSM thin film to be very elastic and both thermally and chemically stable. Therefore, the self-crosslinked Si-CSM thin film endured stretching and bending deformations under relatively harsh conditions. In addition, the uniaxially oriented and self-crosslinked Si-CSM thin film generated linearly polarized light emission. Polarization-dependent and photopatternable secret coatings were fabricated via a spontaneous self-crosslinking reaction after coating the Si-CSM paint and irradiating ultraviolet (UV) light through a photomask. This newly developed flexible optical Si-CSM paint can be applied in next-generation optical coatings.


Assuntos
Cristais Líquidos , Siloxanas , Pintura , Transição de Fase , Polímeros
13.
Appl Opt ; 60(25): G154-G161, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613205

RESUMO

Thin-film geo-phase optics have the potential to dramatically reduce size, weight, and power for large-aperture optical components as well as provide nonmechanical functionality. Topics are presented in manner of increasing conceptual and system complexity to convey the different levels and aspects of system performance improvements. An 8'' aperture, lightweight geo-phase lens is presented followed by discussions on both mechanical and nonmechanical beam steering embodiments. Laser damage thresholds for the thin-film geo-phase prisms are reported. Highly efficient and spectrally broadband nonmechanical line-of-sight steering is also demonstrated. Lastly, novel fabrication techniques, to the best of our knowledge, and the associated reduced fabrication cost implications are presented.

14.
ACS Macro Lett ; 10(2): 278-283, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570785

RESUMO

The classical "chair-twist boat-boat" conformational dynamics (CD) of cyclohexane is thermally activated. Here we report on the photoinduced/azobenzene-assisted CD of bilaterally fused cyclohexane moieties contributing to large photomechanical response of cross-linked azobenzene-functionalized polyimides (X-azoPI), based on 1,2,4,5-cyclohexane-tetracarboxylic-dianhydride (CHDA), exhibiting a photobending angle and photogenerated stress, up to ∼90° and 370 kPa, respectively. In contrast, X-azoPI containing planar pyromellitimide (PMDI) or cage-like bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic-diimide (BCDI) show smaller photomechanical responses. The superior photomechanical performance of X-azoPI with constrained cyclohexane-diimide (CHDI) units is attributed to an increased mobility of segments comprising "hinged" p-phenylene rings, azobenzene, and CHDI units in the cross-link sites. Blue light irradiation initiates the motions driven by photoisomerization/reorientation of azobenzenes connected to CHDI units, whose CD is then amplified, leading to longer-range segmental mobility, more local free volume, and culminating in large photoinduced bending. The trapping of redistributed CHDI's stereoisomers in X-azoPI backbone at Troom is implicated for the observed photothermal memory.

15.
Nanomaterials (Basel) ; 12(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35009998

RESUMO

Blue phase liquid crystals (BPLCs) composed of double-twisted cholesteric helices are promising materials for use in next-generation displays, optical components, and photonics applications. However, BPLCs are only observed in a narrow temperature range of 0.5-3 °C and must be stabilized with a polymer network. Here, we report on controlling the phase behavior of BPLCs by varying the concentration of an amorphous crosslinker (pentaerythritol triacrylate (PETA)). LC mixtures without amorphous crosslinker display narrow phase transition temperatures from isotropic to the blue phase-II (BP-II), blue phase-I (BP-I), and cholesteric phases, but the addition of PETA stabilizes the BP-I phase. A PETA content above 3 wt% prevents the formation of the simple cubic BP-II phase and induces a direct transition from the isotropic to the BP-I phase. PETA widens the temperature window of BP-I from ~6.8 °C for BPLC without PETA to ~15 °C for BPLC with 4 wt% PETA. The BPLCs with 3 and 4 wt% PETA are stabilized using polymer networks via in situ photopolymerization. Polymer-stabilized BPLC with 3 wt% PETA showed switching between reflective to transparent states with response times of 400-500 µs when an AC field was applied, whereas the application of a DC field induced a large color change from green to red.

16.
ACS Appl Mater Interfaces ; 12(49): 55215-55222, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33237715

RESUMO

Self-organized functional soft materials, enabled by specific chemical architectures, are currently attracting tremendous attention because of their stimuli-responsive attributes and applications in advanced technological devices. A novel axially chiral molecular switch containing two azo linkages and six terminal alkyl chains on two elongated rod-shaped wings, that exhibits superior solubility, high helical twisting power, and reversible photoisomerization in an achiral liquid crystal host, is synthesized and utilized in the development of a photoresponsive, self-organized helical superstructure, that is, cholesteric liquid crystal (CLC). The planar CLC adopts a standing helix (SH) configuration because of surface alignment layers on the substrates. This SH can be transitioned to a lying helix configuration, enabling tunable diffraction gratings under the application of electric field. Adjustment of the initial pitch of the planar CLC by photoirradiation yields the diffraction gratings with stripes either parallel or perpendicular to the rubbing direction upon the application of an appropriate electric field. Tunable beam steering along orthogonal directions has been demonstrated. Such tunable stimuli-responsive soft materials fabricated with artificial chiral switches show great potential in optics, photonics, and beyond.

17.
ACS Appl Mater Interfaces ; 12(33): 37400-37408, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32672040

RESUMO

Planar cholesteric liquid crystals (CLCs) are well known for having vibrant reflective coloration that is associated with the handedness and the pitch length of the helicoidal twist of the liquid crystalline molecules. If one observes these films at oblique angles, the reflected colors blue-shift with increasing angles from normal. On the other hand, uniform lying helix (ULH) CLCs, where the helicoidal axis lies in the plane of the substrate, are well-known but are not typically associated with vibrant colors. Here, we examine the unique optical properties of CLCs at oblique incidence angles, specifically the spectral and polarization changes associated with switching between planar and ULH CLCs for various incidence angles. At small angles of incidence (0° < ψ < 45°, where ψ is the angle of incidence relative to the surface normal at the substrate-CLC interface), the electrically driven helical reorientation from planar to ULH results in a blue-shifting of the color and circularly polarized to unpolarized switching behavior. At large angles (45° < ψ < 90°), the behavior is reversed, with a red-shifting color change occurring and the polarization switching from unpolarized to circularly polarized. Modeling of the light propagation through ULH CLCs is used to confirm the change in position and polarization characteristic of the reflection band with incidence angle observed experimentally. This study provides a new perspective on ULH CLCs and reveals a unique reconfigurable angular chromaticity.

18.
Nanoscale ; 12(23): 12613-12622, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32510097

RESUMO

Anisotropy in a crystal structure can lead to large orientation-dependent variations of mechanical, optical, and electronic properties. Material orientation control can thus provide a handle to manipulate properties. Here, a novel sputtering approach for 2D materials enables growth of ultrathin (2.5-10 nm) tellurium films with rational control of the crystalline orientation templated by the substrate. The anisotropic Te 〈0001〉 helical chains align in the plane of the substrate on highly oriented pyrolytic graphite (HOPG) and orthogonally to MgO(100) substrates, as shown by polarized Raman spectroscopy and high-resolution electron microscopy. Furthermore, the films are shown to grow in a textured fashion on HOPG, in contrast with previous reports. These ultrathin Te films cover exceptionally large areas (>1 cm2) and are grown at low temperature (25 °C) affording the ability to accommodate a variety of substrates including flexible electronics. They are robust toward oxidation over a period of days and exhibit the non-centrosymmetric P3121 Te structure. Raman signals are acutely dependent on film thickness, suggesting that optical anisotropy persists and is even enhanced at the ultrathin limit. Hall effect measurements indicate orientation-dependent carrier mobility up to 19 cm2 V-1 s-1. These large-area, ultrathin Te films grown by a truly scalable, physical vapor deposition technique with rational control of orientation/thickness open avenues for controlled orientation-dependent properties in semiconducting thin films for applications in electronic and optoelectronic devices.

19.
Materials (Basel) ; 13(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041240

RESUMO

It has previously been shown that for polymer-stabilized cholesteric liquid crystals (PSCLCs) with negative dielectric anisotropy, the position and bandwidth of the selective reflection notch can be controlled by a direct-current (DC) electric field. The field-induced deformation of the polymer network that stabilizes the devices is mediated by ionic charges trapped in or near the polymer. A unique and reversible electro-optic response is reported here for relatively thin films (≤5 µm). Increasing the DC field strength redshifts the reflection notch to longer wavelength until the reflection disappears at high DC fields. The extent of the tuning range is dependent on the cell thickness. The transition from the reflective to the clear state is due to the electrically controlled, chirped pitch across the small cell gap and not to the field-induced reorientation of the liquid crystal molecules themselves. The transition is reversible. By adjusting the DC field strength, various reflection wavelengths can be addressed from either a different reflective (colored) state at 0 V or a transparent state at a high DC field. Relatively fast responses (~50 ms rise times and ~200 ms fall times) are observed for these thin PSCLCs.

20.
Angew Chem Int Ed Engl ; 59(7): 2684-2687, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31802595

RESUMO

Visible-light-driven molecular switches endowing reversible modulation of the functionalities of self-organized soft materials are currently highly sought after for fundamental scientific studies and technological applications. Reported herein are the design and synthesis of two novel halogen bond donor based chiral molecular switches that exhibit reversible photoisomerization upon exposure to visible light of different wavelengths. These chiral molecular switches induce photoresponsive helical superstructures, that is, cholesteric liquid crystals, when doped into the commercially available room-temperature achiral liquid crystal host 5CB, which also acts as a halogen-bond acceptor. The induced helical superstructure containing the molecular switch with terminal iodo atoms exhibits visible-light-driven reversible unwinding, that is, a cholesteric-nematic phase transition. Interestingly, the molecular switch with terminal bromo atoms confers reversible handedness inversion to the helical superstructure upon irradiation with visible light of different wavelengths. This visible-light-driven, reversible handedness inversion, enabled by a halogen bond donor molecular switch, is unprecedented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA