Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772045

RESUMO

Heat stress induced damage to the gastrointestinal barrier can induce local and systemic inflammatory reactions implicated in heat-stroke. Gastrointestinal barrier damage has been shown to be greater in older relative to young adults following hyperthermia. However, comparisons between young and older adults have been limited to brief exposures (3-h), which may not reflect the duration of heat stress experienced during heat waves. We therefore evaluated markers of intestinal epithelial damage (Log transformed intestinal fatty acid binding protein, IFABPLOG), microbial translocation (soluble cluster of differentiation 14, sCD14LOG), and systemic inflammation (tumour necrosis factor alpha, TNF-αLOG; interleukin 6, IL-6LOG; C-reactive protein, CRP) in 19 young (interquartile range: 21-27 yr; 10 females) and 37 older (68-73 yr; 10 females) adults before and after 9-h of rest in 40°C (9% relative humidity). The magnitude of the increase in IFABPLOG was 0.38 log pg/mL (95% CI, 0.10, 0.65 log pg/mL) greater in the older relative to young cohort (P=0.049) after 9-h heat exposure. At baseline both IL-6LOG and CRP concentrations were higher in the older (IL-6: 2.67 (1.5) log pg/mL, CRP: 0.28 (1.5) mg/mL) relative to the young (IL-6: 1.59 log pg/mL, SD 1.2; CRP: 0.11 mg/mL, SD 1.7) group (both P<0.001). The change in IL-6 and CRP was similar between groups following 9-h heat exposure (IL-6: P=0.053; CRP: P=0.24). Neither sCD14LOG and TNF-αLOG were different between groups at baseline nor altered after 9-h heat exposure. Our data indicate that age may modify intestinal epithelial injury following 9 h of passive heat exposure.

2.
Eur J Appl Physiol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771358

RESUMO

PURPOSE: Autophagy and heat shock protein (HSP) response are proteostatic systems involved in the acute and adaptive responses to exercise. These systems may upregulate sequentially following cellular stress including acute exercise, however, currently few data exist in humans. This study investigated the autophagic and HSP responses to acute intense lower body resistance exercise in peripheral blood mononuclear cells (PBMCs) with and without branched-chain amino acids (BCAA) supplementation. METHODS: Twenty resistance-trained males (22.3 ± 1.5 yr; 175.4 ± .7 cm; 86.4 ± 15.6 kg) performed about of intense lower body resistance exercise and markers of autophagy and HSP70 were measured immediately post- (IPE) and 2, 4, 24, 48, and 72 h post-exercise. Prior to resistance exercise, 10 subjects were randomly assigned to BCAA supplementation of 0.22 g/kg/d for 5 days pre-exercise and up to 72 h following exercise while the other 10 subjects consumed a placebo (PLCB). RESULTS: There were no difference in autophagy markers or HSP70 expression between BCAA and PLCB groups. LC3II protein expression was significantly lower 2 and 4 h post-exercise compared to pre-exercise. LC3II: I ratio was not different at any time point compared to pre-exercise. Protein expression of p62 was lower IPE, 2, and 4 h post-exercise and elevated 24 h post-exercise. HSP70 expression was elevated 48 and 72 h post-exercise. CONCLUSIONS: Autophagy and HSP70 are upregulated in PBMCs following intense resistance exercise with autophagy increasing initially post-exercise and HSP response in the latter period. Moreover, BCAA supplementation did not affect this response.

3.
High Alt Med Biol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700877

RESUMO

Berkemeier QN, Deyhle MR, McCormick JJ, Escobar KA, Mermier CM. The Potential Interplay between HIF-1α, Angiogenic, and Autophagic Signaling during Intermittent Hypoxic Exposure and Exercise High Alt Med Biol. 00:000-000, 2024.-Berkemeier QN, Deyhle MR, McCormick JJ, Escobar KA, Mermier CM. The Potential Interplay between HIF-1α, Angiogenic, and Autophagic Signaling During Intermittent Hypoxic Exposure and Exercise High Alt Med Biol. 00:000-000, 2024.-Environmental hypoxia as a result of decreased barometric pressure upon ascent to high altitudes (>2,500 m) presents increased physiological demands compared with low altitudes, or normoxic environments. Competitive athletes, mountaineers, wildland firefighters, military personnel, miners, and outdoor enthusiasts commonly participate in, or are exposed to, forms of exercise or physical labor at moderate to high altitudes. However, the majority of research on intermittent hypoxic exposure is centered around hematological markers, and the skeletal muscle cellular responses to exercise in hypoxic environments remain largely unknown. Two processes that may be integral for the maintenance of cellular health in skeletal muscle include angiogenesis, or the formation of new blood vessels from preexisting vasculature and autophagy, a process that removes and recycles damaged and dysfunctional cellular material in the lysosome. The purpose of this review is to is to examine the current body of literature and highlight the potential interplay between low-oxygen-sensing pathways, angiogenesis, and autophagy during acute and prolonged intermittent hypoxic exposure in conjunction with exercise. The views expressed in this paper are those of the authors and do not reflect the official policy of the Department of Army, DOD, DOE, ORAU/ORISE or U.S. Government.

4.
Eur J Appl Physiol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753017

RESUMO

PURPOSE: Prolonged work in the heat increases the risk of acute kidney injury (AKI) in young men. Whether aging and age-associated chronic disease may exacerbate the risk of AKI remains unclear. METHODS: We evaluated plasma neutrophil gelatinase-associated lipocalin (NGAL) and serum kidney injury molecule-1 (KIM1) before and after 180 min of moderate-intensity work (200 W/m2) in temperate (wet-bulb globe temperature [WBGT] 16 °C) and hot (32 °C) environments in healthy young (n = 13, 22 years) and older men (n = 12, 59 years), and older men with type 2 diabetes (T2D; n = 9, 60 years) or hypertension (HTN; n = 9, 60 years). RESULTS: There were no changes in NGAL or KIM1 concentrations following prolonged work in temperate conditions in any group. Despite a similar work tolerance, the relative change in NGAL was greater in the older group when compared to the young group following exercise in the hot condition (mean difference + 82 ng/mL; p < 0.001). Baseline concentrations of KIM1 were ~ 22 pg/mL higher in the older relative to young group, increasing by ~ 10 pg/mL in each group after exercise in the heat (both p ≤ 0.03). Despite a reduced work tolerance in the heat in older men with T2D (120 ± 40 min) and HTN (108 ± 42 min), elevations in NGAL and KIM1 were similar to their healthy counterparts. CONCLUSION: Age may be associated with greater renal stress following prolonged work in the heat. The similar biomarker responses in T2D and HTN compared to healthy older men, alongside reduced exercise tolerance in the heat, suggest these individuals may exhibit greater vulnerability to heat-induced AKI if work is prolonged.

5.
J Therm Biol ; 121: 103831, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38565070

RESUMO

Hypothermia is a critical consequence of extreme cold exposure that increases the risk of cold-related injury and death in humans. While the initiation of cytoprotective mechanisms including the process of autophagy and the heat shock response (HSR) is crucial to cellular survival during periods of stress, age-related decrements in these systems may underlie cold-induced cellular vulnerability in older adults. Moreover, whether potential sex-related differences in autophagic regulation influence the human cold stress response remain unknown. We evaluated the effect of age and sex on mechanisms of cytoprotection (autophagy and the HSR) and cellular stress (apoptotic signaling and the acute inflammatory response) during ex vivo hypothermic cooling. Venous blood samples from 20 healthy young (10 females; mean [SD]: 22 [2] years) and 20 healthy older (10 females; 66 [5] years) adults were either isolated immediately (baseline) for peripheral blood mononuclear cells (PBMCs) or exposed to water bath temperatures maintained at 37, 35, 33, 31, or 4 °C for 90 min before PBMC isolation. Proteins associated with autophagy, apoptosis, the HSR, and inflammation were analyzed via Western blotting. Indicators of autophagic initiation and signaling (LC3, ULK1, and beclin-2) and the HSR (HSP90 and HSP70) increased when exposed to hypothermic temperatures in young and older adults (all p ≤ 0.007). Sex-related differences were only observed with autophagic initiation (ULK1; p = 0.015). However, despite increases in autophagic initiators ULK1 and beclin-2 (all p < 0.001), this was paralleled by autophagic dysfunction (increased p62) in all groups (all p < 0.001). Further, apoptotic (cleaved-caspase-3) and inflammatory (IL-6 and TNF-α) signaling increased in all groups (all p < 0.001). We demonstrated that exposure to hypothermic conditions is associated with autophagic dysfunction, irrespective of age or sex, although there may exist innate sex-related differences in cytoprotection in response to cold exposure as evidenced through altered autophagic initiation.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38507777

RESUMO

Type 2 diabetes (T2D) is associated with worsening age-related impairments in heat loss, causing higher core temperature during exercise. We evaluated whether these thermoregulatory impairments occur with altered serum protein responses to heat stress by measuring cytoprotection, inflammation, and tissue damage biomarkers in middle-aged-to-older men (50-74 years) with (n = 16) and without (n = 14) T2D following exercise in 40°C. There were no changes in irisin, klotho, HSP70, sCD14, TNF-α, and IL-6, whereas NGAL (+539 pg/mL, p = 0.002) and iFABP (+250 pg/mL, p < 0.001) increased similarly across groups. These similar response patterns occurred despite elevated core temperature in individuals with T2D, suggesting greater heat vulnerability.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38394645

RESUMO

To protect vulnerable populations during heat waves, public health agencies recommend maintaining indoor air temperature below ∼24-28 °C. While we recently demonstrated that maintaining indoor temperatures ≤26 °C mitigates the development of hyperthermia and cardiovascular strain in older adults, the cellular consequences of prolonged indoor heat stress are poorly understood. We therefore evaluated the cellular stress response in 16 adults (six females) aged 66-78 years during 8 h rest in ambient conditions simulating homes maintained at 22 °C (control) and 26 °C (indoor temperature upper limit proposed by health agencies), as well as non-air-conditioned domiciles during hot weather and heat waves (31 and 36 °C, respectively; all 45% relative humidity). Western blot analysis was used to assess changes in proteins associated with the cellular stress response (autophagy, apoptosis, acute inflammation, and heat shock proteins) in peripheral blood mononuclear cells harvested prior to and following exposure. Following 8 h exposure, no cellular stress response-related proteins differed significantly between the 26 and 22 °C conditions (all, P ≥ 0.056). By contrast, autophagy-related proteins were elevated following exposure to 31 °C (p62: 1.5-fold; P = 0.003) and 36 °C (LC3-II, LC3-II/I, p62; all ≥2.0-fold; P ≤ 0.002) compared to 22 °C. These responses were accompanied by elevations in apoptotic signaling in the 31 and 36 °C conditions (cleaved-caspase-3: 1.8-fold and 3.7-fold, respectively; P ≤ 0.002). Furthermore, HSP90 was significantly reduced in the 36 °C compared to 22 °C condition (0.7-fold; P = 0.014). Our findings show that older adults experience considerable cellular stress during prolonged exposure to elevated ambient temperatures and support recommendations to maintain indoor temperatures ≤26 °C to prevent physiological strain in heat-vulnerable persons.

8.
Eur J Appl Physiol ; 124(4): 1049-1062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37815618

RESUMO

PURPOSE: Exertional heat stress can cause damage to the intestinal epithelium and disrupt gastrointestinal barrier integrity, leading to microbial translocation (MT) linked to the development of heat stroke. This study aimed to assess age-related differences in markers of intestinal epithelial injury and MT following non-heat stress and high-heat stress exercise in healthy young and older men. METHODS: Markers of intestinal epithelial injury (intestinal fatty acid-binding protein-'IFABP') and MT (soluble cluster of differentiation 14-'sCD14'; and lipopolysaccharide-binding protein-'LBP') were assessed in healthy young (18-30 y, n = 13) and older (50-70 y) men (n = 12). Blood samples were collected before, after 180 min of moderate-intensity (metabolic rate: 200 W/m2) walking and following 60 min recovery in either a non-heat stress [temperate: 21.9 °C, 35% relative humidity (RH)] or high-heat stress (hot: 41.4 °C, 35% RH) environment. RESULTS: There were no differences in IFABP and sCD14 between the young and older groups in the temperate condition, while LBP was greater in the older group (+ 0.66 ug/mL; + 0.08 to + 1.24 ug/mL). In the hot condition, the older group experienced greater increases in IFABP compared to the young group (+ 712 pg/mL/hr; + 269 to + 1154 pg/mL/hr). However, there were no clear between-group differences for sCD14 (+ 0.24 ug/mL/hr, - 0.22 to + 0.70 ug/mL/hr) or LBP (+ 0.86 ug/mL/hr, - 0.73 to + 2.46 ug/mL/hr). CONCLUSION: While older men may experience greater intestinal epithelial injury following exercise in the heat; this did not lead to a greater magnitude of microbial translocation relative to their younger counterparts.


Assuntos
Transtornos de Estresse por Calor , Receptores de Lipopolissacarídeos , Masculino , Humanos , Idoso , Exercício Físico , Biomarcadores , Resposta ao Choque Térmico , Temperatura Alta
9.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R53-R65, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955132

RESUMO

To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate whole body dry and evaporative heat exchange. These responses are modulated by the rise in body temperature (thermal factors), as well as several nonthermal factors implicated in the cardiovascular response to exercise (i.e., central command, mechanoreceptors, and metaboreceptors). However, the way these nonthermal factors interact with thermal factors to maintain heat balance remains poorly understood. We therefore used direct calorimetry to quantify the effects of dose-dependent increases in the activation of these nonthermal stimuli on whole body dry and evaporative heat exchange during dynamic exercise. In a randomized crossover design, eight participants performed 45-min cycling at a fixed metabolic heat production (200 W/m2) in warm, dry conditions (30°C, 20% relative humidity) on four separate occasions, differing only in the level of lower-limb compression applied via bilateral thigh cuffs pressurized to 0, 30, 60, or 90 mmHg. This model provoked increments in nonthermal activation while ensuring the heat loss required to balance heat production was matched across trials. At end-exercise, dry heat loss was 2 W/m2 [1, 3] lower per 30-mmHg pressure increment (P = 0.006), whereas evaporative heat loss was elevated 5 W/m2 [3, 7] with each pressure increment (P < 0.001). Body heat storage and esophageal temperature did not differ across conditions (both P ≥ 0.600). Our findings indicate that the nonthermal factors engaged during exercise exert dose-dependent, opposing effects on whole body dry and evaporative heat exchange, which do not significantly alter heat balance.NEW & NOTEWORTHY To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate dry and evaporative heat exchange. These responses are modulated by body temperatures (thermal factors) and several nonthermal factors (e.g., central command, metaboreceptors), although the way thermal and nonthermal factors interact to regulate body temperature is poorly understood. We demonstrate that nonthermal factors exert dose-dependent, opposing effects on dry and evaporative heat loss, without altering heat storage during dynamic exercise.


Assuntos
Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Sudorese , Termogênese/fisiologia
10.
J Appl Physiol (1985) ; 136(2): 408-420, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153847

RESUMO

Older adults are at greater risk of heat-related morbidity and mortality during heat waves, which is commonly linked to impaired thermoregulation. However, little is known about the influence of increasing age on the relation between thermal strain and perceptual responses during daylong heat exposure. We evaluated thermal and perceptual responses in 20 young (19-31 yr) and 39 older adults (20 with hypertension and/or type 2 diabetes; 61-78 yr) resting in the heat for 9 h (heat index: 37°C). Body core and mean skin temperature areas under the curve (AUC, hours 0-9) were assessed as indicators of cumulative thermal strain. Self-reported symptoms (68-item environmental symptoms questionnaire) and mood disturbance (40-item profile of mood states questionnaire) were assessed at end-heating (adjusted for prescores). Body core temperature AUC was 2.4°C·h [1.0, 3.7] higher in older relative to young adults (P < 0.001), whereas mean skin temperature AUC was not different (-0.5°C·h [-4.1, 3.2] P = 0.799). At end-heating, self-reported symptoms were not different between age groups (0.99-fold [0.80, 1.23], P = 0.923), with or without adjustment for body core or mean skin temperature AUC (both P ≥ 0.824). Mood disturbance was 0.93-fold [0.88, 0.99] lower in older, relative to young adults (P = 0.031). Older adults with and without chronic health conditions experienced similar thermal strain, yet those with these conditions reported lower symptom scores and mood disturbance compared with young adults and their age-matched counterparts (all P ≤ 0.026). Although older adults experienced heightened thermal strain during the 9-h heat exposure, they did not experience greater self-reported symptoms or mood disturbance relative to young adults.NEW & NOTEWORTHY Despite experiencing greater cumulative thermal strain during 9 h of passive heat exposure, older adults reported similar heat-related symptoms and lower mood disturbance than young adults. Furthermore, self-reported symptoms and mood disturbance were lower in older adults with common age-associated health conditions than young adults and healthy age-matched counterparts. Perceptual responses to heat in older adults can underestimate their level of thermal strain compared with young adults, which may contribute to their increased heat vulnerability.


Assuntos
Diabetes Mellitus Tipo 2 , Temperatura Alta , Adulto Jovem , Humanos , Idoso , Autorrelato , Temperatura Cutânea , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal
11.
JAMA ; 331(3): 253-256, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38127341

RESUMO

This randomized study evaluates the hypothesis that foot immersion in cool water alone or with supplemental neck cooling mitigates increases in core temperature in older adults exposed to environmental conditions simulating deadly heat waves in North America.


Assuntos
Temperatura Corporal , Temperatura Baixa , Exposição Ambiental , Calor Extremo , Imersão , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Calor Extremo/efeitos adversos , , Temperatura Alta , Pescoço , Temperatura , Água
12.
Adv Biol (Weinh) ; 8(3): e2300560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150671

RESUMO

Autophagy is a crucial cytoprotective mechanism preventing the accumulation of cellular damage, especially during external stimuli such as cold exposure. Older adults poorly tolerate cold exposure and age-related impairments in autophagy may contribute to the associated reductions in cold tolerance. The purpose of this investigation is to evaluate the effect of different intensities of in vivo cold-water immersion and in vitro cold exposure on autophagic and apoptotic signaling in young and older males. Peripheral blood mononuclear cells (PBMCs) are isolated at baseline, end-cold exposure, and after 3 h of thermoneutral recovery. Additionally, PBMCs are treated with rapamycin and bafilomycin prior to in vitro cold exposure equivalent to in vivo core temperatures (35-37 °C). Proteins associated with autophagy, apoptosis, the heat shock response, and inflammation are analyzed via Western blotting. Moderate cold stress (0.5 °C decrease in core temperature) increased autophagic and heat shock protein activity while high cold stress (1.0 °C decrease in core temperature) augmented apoptosis in young males. In older males, minimal autophagic activation during both cold-water exposures are associated with increased apoptotic and inflammatory proteins. Although in vitro cold exposure confirmed age-related dysfunction in autophagy, rapamycin-induced stimulation of autophagic proteins underlie the potential to reverse age-related vulnerability to cold exposure.


Assuntos
Imersão , Leucócitos Mononucleares , Masculino , Humanos , Idoso , Temperatura , Autofagia , Apoptose , Sirolimo/farmacologia , Água
13.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R29-R42, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955130

RESUMO

Autophagy is a vital cellular process, essential to maintaining cellular function during acute physiological stressors including exercise and heat stress. We previously showed that autophagy occurs during exercise in an intensity-dependent manner in peripheral blood mononuclear cells (PBMCs) from young men, with elevated responses in the heat. However, given autophagy declines with age, it is unclear whether a similar pattern of response occurs in older adults. Therefore, we evaluated autophagy and the cellular stress response [i.e., apoptosis, inflammation, and the heat shock response (HSR)] in PBMCs from 10 healthy older men [mean (SD): aged 70 yr (5)] in response to 30 min of semirecumbent cycling at low, moderate, and vigorous intensities [40, 55, and 70% maximal oxygen consumption (V̇o2max), respectively] in a temperate (25°C) environment, with an additional vigorous-intensity bout (70% of V̇o2max) performed in a hot environment (40°C). Responses were evaluated before and after exercise, as well as throughout a 6-h seated recovery period performed in the same environmental conditions as the respective exercise bout. Proteins were assessed via Western blot. Although we observed elevations in mean body temperature with each increase in exercise intensity, autophagy was only stimulated during vigorous-intensity exercise, where we observed elevations in LC3-II (P < 0.05). However, when the same exercise was performed in the heat, the LC3-II response was attenuated, which was accompanied by significant p62 accumulation (P < 0.05). Altogether, our findings demonstrate that older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot environments, potentially underlying heat-induced cellular vulnerability in older men.NEW & NOTEWORTHY We demonstrate that autophagic stimulation occurs in response to short-duration (30-min) vigorous-intensity exercise in peripheral blood mononuclear cells from older adults; however, no changes in autophagy occur during low- or moderate-intensity exercise. Moreover, older adults exhibit autophagic impairments when the same vigorous-intensity exercise is performed in hot ambient conditions. When paired with an attenuated heat shock response, as well as elevated apoptotic responses, older men may exhibit greater cellular vulnerability to exertional heat stress.


Assuntos
Transtornos de Estresse por Calor , Leucócitos Mononucleares , Masculino , Humanos , Idoso , Temperatura Corporal/fisiologia , Resposta ao Choque Térmico , Autofagia , Temperatura Alta
14.
Temperature (Austin) ; 10(4): 454-464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130657

RESUMO

With global warming, workers are increasingly exposed to strenuous occupations in hot environments. Given age- and disease-associated declines in thermoregulatory function, older workers are at an elevated risk of developing heat-related injuries. Brain-derived neurotrophic factor (BDNF) is thought to confer neuroprotection during acute exercise, however, the influence of environmental heat on BDNF responses during prolonged work remains unclear. Therefore, we evaluated serum BDNF concentrations before and after 180 min of moderate-intensity treadmill walking (200 W/m2) and after 60 min of post-exercise recovery in temperate (wet-bulb globe temperature (WBGT) 16°C) and hot (WBGT 32°C) environments in 13 healthy young men (mean [SD; 22 [3] years), 12 healthy older men (59 [4] years), 10 men with hypertension (HTN) (60 [4] years), and 9 men with type 2 diabetes (T2D) (60 [5] years). In the temperate condition, all but one participant (1 HTN) completed the 180 min of exercise. While exercise tolerance in the heat was lower in older men with HTN (117 min [45]) and T2D (123 min [42]) compared to healthy older men (159 min [31]) (both p ≤ 0.049), similar end-exercise rectal temperatures (38.9°C [0.4]) were observed across groups, paralleled by similar elevations in serum BDNF across groups at end-exercise (+1106 pg/mL [203]) and end-recovery (+938 pg/mL [146]; all p ≤ 0.01) in the heat. No changes in serum BDNF were observed in the temperate condition. Our findings indicate similar BDNF responses in individuals with HTN or T2D compared to their healthy counterparts, despite exhibiting reduced tolerance to heat.

15.
J Appl Physiol (1985) ; 135(5): 969-976, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707866

RESUMO

Heat waves can cause dangerous elevations in body temperature that can compromise cellular function and increase the risk of heat stroke and major cardiovascular events. Visiting a cooling center or other air-conditioned location is commonly recommended by health agencies to protect heat-vulnerable older persons but the associated cellular effects remain underexplored. We evaluated cellular stress responses in peripheral blood mononuclear cells (PBMC) from 19 older adults [71 (SD 2) yr; 9 females] before and after a 9-h heat exposure [40.3°C and 9.3% relative humidity (RH)], with participants moved to a cool room (∼23°C) for hours 5 and 6 (cooling group). Responses were compared with 17 older adults [72 (4) yr; 7 females] who remained in the heat for the entire 9 h (control group). Changes in proteins associated with autophagy, apoptotic signaling, acute inflammation, and the heat shock response (HSR) were assessed via Western blot. Although both groups experienced similar elevations in physiological strain before the cooling center intervention, brief cooling resulted in stark albeit transient reductions in core temperature and heart rate. At end-exposure, autophagy proteins LC3-II and p62 were elevated 1.9-fold [95% CI: 1.2, 2.8] and 2.3-fold [1.4, 3.8], respectively, in the control group relative to cooling group. This was paired with a 2.8-fold [1.6, 4.7] greater rise in apoptotic protein cleaved-caspase-3 in the control group compared with the cooling group. Our findings indicate that 2 h of ambient cooling midway through a 9-h simulated heat wave may preserve autophagy and mitigate heat-induced cellular stress in older adults.NEW & NOTEWORTHY Heat waves can lead to dangerous elevations in body temperature, increasing the risk of life-threatening health conditions. Visiting a cooling center or other air-conditioned location is commonly recommended to protect heat-vulnerable older persons, although the effects on the cellular stress response remain unknown. We found that 2 h of ambient cooling midway through a 9 h simulated heat wave preserves autophagy, a vital cellular survival mechanism, and mitigates accompanying pathways of cellular stress in older adults.


Assuntos
Transtornos de Estresse por Calor , Leucócitos Mononucleares , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Temperatura Alta , Temperatura Baixa , Temperatura Corporal/fisiologia , Autofagia , Regulação da Temperatura Corporal/fisiologia
16.
J Appl Physiol (1985) ; 135(3): 673-687, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439239

RESUMO

Aging is associated with an elevated risk of heat-related mortality and morbidity, attributed, in part, to declines in thermoregulation. However, comparisons between young and older adults have been limited to brief exposures (1-4 h), which may not adequately reflect the duration or severity of the heat stress experienced during heat waves. We therefore evaluated physiological responses in 20 young (19-31 yr; 10 females) and 39 older (61-78 yr; 11 females) adults during 9 h of rest at 40°C and 9% relative humidity. Whole body heat exchange and storage were measured with direct calorimetry during the first 3 h and final 3 h. Core temperature (rectal) was monitored continuously. The older adults stored 88 kJ [95% confidence interval (CI): 29, 147] more heat over the first 3 h of exposure (P = 0.006). Although no between-group differences were observed after 3 h [young: 37.6°C (SD 0.2°C) vs. older: 37.7°C (0.3°C); P = 0.216], core temperature was elevated by 0.3°C [0.1, 0.4] (adjusted for baseline) in the older group at hour 6 [37.6°C (0.2°C) vs. 37.9°C (0.2°C); P < 0.001] and by 0.2°C [0.0, 0.3] at hour 9 [37.7°C (0.3°C) vs. 37.8°C (0.3°C)], although the latter comparison was not significant after multiplicity correction (P = 0.061). Our findings indicate that older adults sustain greater increases in heat storage and core temperature during daylong exposure to hot dry conditions compared with their younger counterparts. This study represents an important step in the use of ecologically relevant, prolonged exposures for translational research aimed at quantifying the physiological and health impacts of hot weather and heat waves on heat-vulnerable populations.NEW & NOTEWORTHY We found greater increases in body heat storage and core temperature in older adults than in their younger counterparts during 9 h of resting exposure to hot dry conditions. Furthermore, the age-related increase in core temperature was exacerbated in older adults with common heat-vulnerability-linked health conditions (type 2 diabetes and hypertension). Impairments in thermoregulatory function likely contribute to the increased risk of heat-related illness and injury seen in older adults during hot weather and heat waves.


Assuntos
Envelhecimento , Regulação da Temperatura Corporal , Envelhecimento/fisiologia , Adulto , Pessoa de Meia-Idade , Idoso , Humanos , Masculino , Feminino , Hemodinâmica , Temperatura Alta , Temperatura Corporal , Fatores de Tempo , Fatores Sexuais , Diabetes Mellitus Tipo 2/complicações , Hipertensão/complicações , Resposta ao Choque Térmico
17.
J Appl Physiol (1985) ; 135(3): 688-695, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471211

RESUMO

With rising global temperatures, heat-related mortality is increasing, particularly among older adults. Although this is often attributed to declines in thermoregulatory function, little is known regarding the effect of age on the cellular processes associated with mitigating heat-induced cytotoxicity. We compared key components of the cellular stress response in 19 young (19-31 yr; 10 female) and 37 older adults (61-78 yr; 10 female) during 9 h of heat exposure (40°C, 9% relative humidity). Mean body temperature (Tbody) was calculated from core and skin temperatures. Changes in proteins associated with autophagy, apoptotic signaling, acute inflammation, and the heat shock response were assessed via Western blot in peripheral blood mononuclear cells harvested before and after exposure. Tbody increased by 1.5 (SD 0.3)°C and 1.7 (0.3)°C in the young and older adults, respectively. We observed similar elevations in autophagy-related proteins (LC3-II and LC3-II/I) in young and older adults (both P ≥ 0.121). However, the older adults displayed signs of autophagic dysfunction, evidenced by a 3.7-fold [95% CI: 2.4, 5.6] greater elevation in the selective autophagy receptor p62 (P < 0.001). This was paired with elevations in apoptotic responses, with a 1.7-fold [1.3, 2.3] increase in cleaved caspase-3 in the older relative to young adults (P < 0.001). Older adults also exhibited diminished heat shock protein 90 responses (0.7-fold [0.5, 0.9] vs. young, P = 0.011) and, at any given level of thermal strain (Tbody area under the curve), elevated tumor necrosis factor-α (1.5-fold [1.0, 2.5] vs. young, P = 0.008). Attenuated autophagic responses may underlie greater vulnerability to heat-induced cellular injury in older adults.NEW & NOTEWORTHY We demonstrate for the first time that peripheral blood mononuclear cells from older adults exhibit signs of autophagic impairments during daylong (9 h) heat exposure relative to their younger counterparts. This was paired with greater apoptotic signaling and inflammatory responses, and an inability to stimulate components of the heat shock response. Thus, autophagic dysregulation during prolonged heat exposure may contribute to age-related heat vulnerability during hot weather and heat waves.


Assuntos
Regulação da Temperatura Corporal , Leucócitos Mononucleares , Humanos , Adulto Jovem , Feminino , Idoso , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal , Temperatura Cutânea , Autofagia , Resposta ao Choque Térmico
18.
Environ Health Perspect ; 131(6): 67003, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262028

RESUMO

BACKGROUND: Health agencies, including the U.S. Centers for Disease Control and Prevention and the World Health Organization, recommend that heat-vulnerable older adults without home air-conditioning should visit cooling centers or other air-conditioned locations (e.g., a shopping mall) during heat waves. However, experimental evidence supporting the effectiveness of brief air-conditioning is lacking. OBJECTIVE: We evaluated whether brief exposure to an air-conditioned environment, as experienced in a cooling center, was effective for limiting physiological strain in older adults during a daylong laboratory-based heat wave simulation. METHODS: Forty adults 64-79 years of age underwent a 9-h simulated heat wave (heat index: 37°C) with (cooling group, n=20) or without (control group, n=20) a cooling intervention consisting of 2-h rest in an air-conditioned room (∼23°C, hours 5-6). Core and skin temperatures, whole-body heat exchange and storage, cardiovascular function, and circulating markers of acute inflammation were assessed. RESULTS: Core temperature was 0.8°C (95% CI: 0.6, 0.9) lower in the cooling group compared with the control group at the end of the cooling intervention (p<0.001; hour 6), and it remained 0.3°C (95% CI: 0.2, 0.4) lower an hour after returning to the heat (p<0.001; hour 7). Despite this, core temperatures in each group were statistically equivalent at hours 8 and 9, within ±0.3°C (p≤0.005). Cooling also acutely reduced demand on the heart and improved indices of cardiovascular autonomic function (p≤0.021); however, these outcomes were not different between groups at the end of exposure (p≥0.58). DISCUSSION: Brief air-conditioning exposure during a simulated heat wave caused a robust but transient reduction in core temperature and cardiovascular strain. These findings provide important experimental support for national and international guidance that cooling centers are effective for limiting physiological strain during heat waves. However, they also show that the physiological impacts of brief cooling are temporary, a factor that has not been considered in guidance issued by health agencies. https://doi.org/10.1289/EHP11651.


Assuntos
Temperatura Alta , Temperatura Cutânea , Temperatura Baixa
19.
Am J Ind Med ; 66(7): 610-619, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37017274

RESUMO

BACKGROUND: With rising temperature extremes, older workers are becoming increasingly vulnerable to heat-related injuries because of age- and disease-associated decrements in thermoregulatory function. Endothelial monocyte-activating polypeptide-II (EMAP-II) is a proinflammatory cytokine that has not yet been well-characterized during heat stress, and which may mediate the inflammatory response to high levels of physiological strain. METHODS: We evaluated serum EMAP-II concentrations before and after 180 min of moderate-intensity work (200 W/m2 ) in temperate (wet-bulb globe temperature [WBGT] 16°C) and hot (WBGT 32°C) environments in heat-unacclimatized, healthy young (n = 13; mean [SD]; 22 [3] years) and older men (n = 12; 59 [4] years), and unacclimatized older men with hypertension (HTN) (n = 10; 60 [4] years) or type 2 diabetes (T2D) (n = 9; 60 [5] years). Core temperature and heart rate were measured continuously. RESULTS: In the hot environment, work tolerance time was lower in older men with HTN and T2D compared to healthy older men (both p < 0.049). While core temperature and heart rate reserve increased significantly (p < 0.001), they did not differ across groups. End-exercise serum EMAP-II concentrations were higher in young men relative to their older counterparts due to higher baseline levels (both p ≤ 0.02). Elevations in serum EMAP-II concentrations were similar between healthy older men and older men with HTN, while serum EMAP-II concentrations did not change in older men with T2D following prolonged work in the heat. CONCLUSION: Serum EMAP-II concentrations increased following prolonged moderate-intensity work in the heat and this response is influenced by age and the presence of HTN or T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Masculino , Humanos , Idoso , Monócitos , Citocinas , Temperatura Alta
20.
Eur J Appl Physiol ; 123(7): 1519-1527, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929016

RESUMO

PURPOSE: Klotho is a cytoprotective protein that increases during acute physiological stressors (e.g., exercise heat stress), although age-related declines in klotho may underlie cellular vulnerability to heat stress. The present study aimed to compare serum klotho in healthy older men and men with type 2 diabetes (T2D) or hypertension (HTN) during prolonged exercise in temperate or hot conditions. METHODS: We evaluated serum klotho in 12 healthy older men (mean [SD]; 59 years [4]), 10 men with HTN (60 years [4]), and 9 men with T2D (60 years [5]) before and after 180 min of moderate-intensity (fixed metabolic rate of 200 W/m2; ~ 3.4 METs) exercise and 60 min of recovery in temperate (wet-bulb globe temperature (WBGT) 16 °C) and hot (WBGT 32 °C) environments. Core temperature (rectal), heart rate (HR), and heart rate reserve (HRR) were measured continuously while klotho was measured at the end of baseline, exercise, and recovery. RESULTS: Total exercise duration was reduced during the hot condition in older men with HTN and T2D than healthy older men (both p ≤ 0.049), despite similar core temperatures, HR, and HRR. Klotho was higher than rest following exercise in the heat in healthy older men (+ 191 pg/mL [189]; p < 0.001) and responses were greater (p = 0.036) than men with HTN (+ 118 pg/mL [49]; p = 0.030), although klotho did not increase in men with T2D (+ 4 pg/mL [71]; p ≥ 0.638). CONCLUSION: Given klotho's role in cytoprotection, older men with HTN and especially T2D may be at increased cellular vulnerability to prolonged exercise or physically demanding exercise in the heat.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Masculino , Humanos , Idoso , Temperatura Corporal , Temperatura Alta , Regulação da Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA