Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3233, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680866

RESUMO

The recently discovered spin-active boron vacancy (V[Formula: see text]) defect center in hexagonal boron nitride (hBN) has high contrast optically-detected magnetic resonance (ODMR) at room-temperature, with a spin-triplet ground-state that shows promise as a quantum sensor. Here we report temperature-dependent ODMR spectroscopy to probe spin within the orbital excited-state. Our experiments determine the excited-state spin Hamiltonian, including a room-temperature zero-field splitting of 2.1 GHz and a g-factor similar to that of the ground-state. We confirm that the resonance is associated with spin rotation in the excited-state using pulsed ODMR measurements, and we observe Zeeman-mediated level anti-crossings in both the orbital ground- and excited-state. Our observation of a single set of excited-state spin-triplet resonance from 10 to 300 K is suggestive of symmetry-lowering of the defect system from D3h to C2v. Additionally, the excited-state ODMR has strong temperature dependence of both contrast and transverse anisotropy splitting, enabling promising avenues for quantum sensing.

2.
Nat Commun ; 11(1): 5229, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067420

RESUMO

Development of sensitive local probes of magnon dynamics is essential to further understand the physical processes that govern magnon generation, propagation, scattering, and relaxation. Quantum spin sensors like the NV center in diamond have long spin lifetimes and their relaxation can be used to sense magnetic field noise at gigahertz frequencies. Thus far, NV sensing of ferromagnetic dynamics has been constrained to the case where the NV spin is resonant with a magnon mode in the sample meaning that the NV frequency provides an upper bound to detection. In this work we demonstrate ensemble NV detection of spinwaves generated via a nonlinear instability process where spinwaves of nonzero wavevector are parametrically driven by a high amplitude microwave field. NV relaxation caused by these driven spinwaves can be divided into two regimes; one- and multi-magnon NV relaxometry. In the one-magnon NV relaxometry regime the driven spinwave frequency is below the NV frequencies. The driven spinwave undergoes four-magnon scattering resulting in an increase in the population of magnons which are frequency matched to the NVs. The dipole magnetic fields of the NV-resonant magnons couple to and relax nearby NV spins. The amplitude of the NV relaxation increases with the wavevector of the driven spinwave mode which we are able to vary up to 3 × 106 m-1, well into the part of the spinwave spectrum dominated by the exchange interaction. Increasing the strength of the applied magnetic field brings all spinwave modes to higher frequencies than the NV frequencies. We find that the NVs are relaxed by the driven spinwave instability despite the absence of any individual NV-resonant magnons, suggesting that multiple magnons participate in creating magnetic field noise below the ferromagnetic gap frequency which causes NV spin relaxation.

3.
Phys Rev Lett ; 124(25): 257202, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639765

RESUMO

Interfacial magnetic anisotropy in magnetic insulators has been largely unexplored. Recently, interface-induced skyrmions and electrical control of magnetization have been discovered in insulator-based heterostructures, which demand a thorough understanding of interfacial interactions in these materials. We observe a substantial, tunable interfacial magnetic anisotropy between Tm_{3}Fe_{5}O_{12} epitaxial thin films and fifteen nonmagnetic materials spanning a significant portion of the periodic table, which we attribute to Rashba spin-orbit coupling. Our results show a clear distinction between nonmagnetic capping layers from the d block and the p block. This work offers a new path for controlling magnetic phases in magnetic insulators for low-loss spintronic applications.

4.
Nano Lett ; 19(8): 5683-5688, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31310542

RESUMO

Electrical detection of topological magnetic textures such as skyrmions is currently limited to conducting materials. Although magnetic insulators offer key advantages for skyrmion technologies with high speed and low loss, they have not yet been explored electrically. Here, we report a prominent topological Hall effect in Pt/Tm3Fe5O12 bilayers, where the pristine Tm3Fe5O12 epitaxial films down to 1.25 unit cell thickness allow for tuning of topological Hall stability over a broad range from 200 to 465 K through atomic-scale thickness control. Although Tm3Fe5O12 is insulating, we demonstrate the detection of topological magnetic textures through a novel phenomenon: "spin-Hall topological Hall effect" (SH-THE), where the interfacial spin-orbit torques allow spin-Hall-effect generated spins in Pt to experience the unique topology of the underlying skyrmions in Tm3Fe5O12. This novel electrical detection phenomenon paves a new path for utilizing a large family of magnetic insulators in future skyrmion technologies.

5.
Sci Adv ; 4(9): eaat6574, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30202783

RESUMO

Magnetic sensing technology has found widespread application in a diverse set of industries including transportation, medicine, and resource exploration. These uses often require highly sensitive instruments to measure the extremely small magnetic fields involved, relying on difficult-to-integrate superconducting quantum interference devices and spin-exchange relaxation-free magnetometers. A potential alternative, nitrogen-vacancy (NV) centers in diamond, has shown great potential as a high-sensitivity and high-resolution magnetic sensor capable of operating in an unshielded, room-temperature environment. Transitioning NV center-based sensors into practical devices, however, is impeded by the need for high-power radio frequency (RF) excitation to manipulate them. We report an advance that combines two different physical phenomena to enable a highly efficient excitation of the NV centers: magnetoelastic drive of ferromagnetic resonance and NV-magnon coupling. Our work demonstrates a new pathway that combine acoustics and magnonics that enables highly energy-efficient and local excitation of NV centers without the need for any external RF excitation and, thus, could lead to completely integrated, on-chip, atomic sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA