Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1950): 20210130, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33975470

RESUMO

The future of coral reef ecosystems is under threat because vital reef-accreting species such as coralline algae are highly susceptible to ocean acidification. Although ocean acidification is known to reduce coralline algal growth rates, its direct effects on the development of coralline algal reproductive structures (conceptacles) is largely unknown. Furthermore, the long-term, multi-generational response of coralline algae to ocean acidification is extremely understudied. Here, we investigate how mean pH, pH variability and the pH regime experienced in their natural habitat affect coralline algal conceptacle abundance and size across six generations of exposure. We show that second-generation coralline algae exposed to ocean acidification treatments had conceptacle abundances 60% lower than those kept in present-day conditions, suggesting that conceptacle development is initially highly sensitive to ocean acidification. However, this negative effect of ocean acidification on conceptacle abundance disappears after three generations of exposure. Moreover, we show that this transgenerational acclimation of conceptacle development is not facilitated by a trade-off with reduced investment in growth, as higher conceptacle abundances are associated with crusts with faster growth rates. These results indicate that the potential reproductive output of coralline algae may be sustained under future ocean acidification.


Assuntos
Rodófitas , Água do Mar , Aclimatação , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares
2.
Sci Rep ; 9(1): 12829, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492930

RESUMO

Natural variability in pH in the diffusive boundary layer (DBL), the discrete layer of seawater between bulk seawater and the outer surface of organisms, could be an important factor determining the response of corals and coralline algae to ocean acidification (OA). Here, two corals with different morphologies and one coralline alga were maintained under two different regimes of flow velocities, pH, and light intensities in a 12 flumes experimental system for a period of 27 weeks. We used a combination of geochemical proxies, physiological and micro-probe measurements to assess how these treatments affected the conditions in the DBL and the response of organisms to OA. Overall, low flow velocity did not ameliorate the negative effect of low pH and therefore did not provide a refugia from OA. Flow velocity had species-specific effects with positive effects on calcification for two species. pH in the calcifying fluid (pHcf) was reduced by low flow in both corals at low light only. pHcf was significantly impacted by pH in the DBL for the two species capable of significantly modifying pH in the DBL. The dissolved inorganic carbon in the calcifying fluid (DICcf) was highest under low pH for the corals and low flow for the coralline, while the saturation state in the calcifying fluid and its proxy (FWHM) were generally not affected by the treatments. This study therefore demonstrates that the effects of OA will manifest most severely in a combination of lower light and lower flow habitats for sub-tropical coralline algae. These effects will also be greatest in lower flow habitats for some corals. Together with existing literature, these findings reinforce that the effects of OA are highly context dependent, and will differ greatly between habitats, and depending on species composition.


Assuntos
Ácidos/química , Antozoários/fisiologia , Eucariotos/fisiologia , Oceanos e Mares , Reologia , Animais , Calcificação Fisiológica , Carbonatos/química , Difusão , Concentração de Íons de Hidrogênio , Luz , Fotossíntese
3.
Proc Biol Sci ; 285(1884)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089625

RESUMO

Ocean acidification is a threat to the continued accretion of coral reefs, though some undergo daily fluctuations in pH exceeding declines predicted by 2100. We test whether exposure to greater pH variability enhances resistance to ocean acidification for the coral Goniopora sp. and coralline alga Hydrolithon reinboldii from two sites: one with low pH variability (less than 0.15 units daily; Shell Island) and a site with high pH variability (up to 1.4 pH units daily; Tallon Island). We grew populations of both species for more than 100 days under a combination of differing pH variability (high/low) and means (ambient pH 8.05/ocean acidification pH 7.65). Calcification rates of Goniopora sp. were unaffected by the examined variables. Calcification rates of H. reinboldii were significantly faster in Tallon than in Shell Island individuals, and Tallon Island individuals calcified faster in the high variability pH 8.05 treatment compared with all others. Geochemical proxies for carbonate chemistry within the calcifying fluid (cf) of both species indicated that only mean seawater pH influenced pHcf pH treatments had no effect on proxies for Ωcf These limited responses to extreme pH treatments demonstrate that some calcifying taxa may be capable of maintaining constant rates of calcification under ocean acidification by actively modifying Ωcf.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Carbonatos/química , Rodófitas/fisiologia , Água do Mar/química , Animais , Recifes de Corais , Concentração de Íons de Hidrogênio , Austrália Ocidental
4.
Proc Biol Sci ; 285(1878)2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29720418

RESUMO

Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO3) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We use two novel geochemical techniques based on boron systematics and Raman spectroscopy, which together provide the first constraints on the sensitivity of coral calcifying fluid calcium concentrations ([Formula: see text]) to changing seawater pH. In response to simulated end-of-century pH conditions, Pocillopora damicornis increased [Formula: see text] to as much as 25% above that of seawater and maintained constant calcification rates. Conversely, Acropora youngei displayed less control over [Formula: see text], and its calcification rates strongly declined at lower seawater pH. Although the role of [Formula: see text] in driving calcification has often been neglected, increasing [Formula: see text] may be a key mechanism enabling more resistant corals to cope with ocean acidification and continue to build CaCO3 skeletons in a high-CO2 world.


Assuntos
Antozoários/fisiologia , Boro/análise , Calcificação Fisiológica , Água do Mar/química , Análise Espectral Raman , Animais , Cálcio/metabolismo , Carbonato de Cálcio/química , Dióxido de Carbono/química , Concentração de Íons de Hidrogênio
5.
Sci Rep ; 7(1): 7573, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790423

RESUMO

Evaluating the factors responsible for differing species-specific sensitivities to declining seawater pH is central to understanding the mechanisms via which ocean acidification (OA) affects coral calcification. We report here the results of an experiment comparing the responses of the coral Acropora yongei and Pocillopora damicornis to differing pH levels (8.09, 7.81, and 7.63) over an 8-week period. Calcification of A. youngei was reduced by 35% at pH 7.63, while calcification of P. damicornis was unaffected. The pH in the calcifying fluid (pHcf) was determined using δ11B systematics, and for both species pHcf declined slightly with seawater pH, with the decrease being more pronounced in P. damicornis. The dissolved inorganic carbon concentration at the site of calcification (DICcf) was estimated using geochemical proxies (B/Ca and δ11B) and found to be double that of seawater DIC, and increased in both species as seawater pH decreased. As a consequence, the decline of the saturation state at the site of calcification (Ωcf) with OA was partially moderated by the DICcf increase. These results highlight that while pHcf, DICcf and Ωcf are important in the mineralization process, some corals are able to maintain their calcification rates despite shifts in their calcifying fluid carbonate chemistry.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Água do Mar/química , Animais , Compostos Inorgânicos de Carbono/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares
6.
Sci Rep ; 7(1): 2207, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526853

RESUMO

Severe, global-scale thermal stress events like those of 1998 and 2016, are becoming more frequent and intense, potentially compromising the future of coral reefs. Here we report the effects of the 1998 bleaching event on coral calcification as well as the composition of the calcifying fluid (cf) from which corals precipitate their calcium carbonate skeletons. This was investigated by using the Sr/Ca, Li/Mg (temperature), and boron isotopes (δ11B) and B/Ca (carbonate chemistry) proxies in a Porites sp. coral. Following the summer of 1998 the coral exhibited a prolonged period (~18 months) of reduced calcification (~60%) and a breakdown in the seasonality of the geochemical proxies. However, the maintenance of elevated dissolved inorganic carbon (DICcf; >×2 seawater) and pHcf (>8.3 compared to seawater ~8.0) even during severe stress of 1998 indicate that a minimum threshold of high aragonite saturation state (Ωcf) of ~14 (~×4 seawater), is an essential pre-requisite for coral calcification. However, despite maintaining elevated levels of Ωcf even under severe stress, coral growth is still impaired. We attribute this to reductions in either the effective active volume of calcification and/or DICcf as bleaching compromises the photosynthetically fixed carbon pool available to the coral.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Estresse Fisiológico , Temperatura , Animais , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Oligoelementos
7.
Nat Commun ; 6: 8562, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26493738

RESUMO

Increasing intensity of marine heatwaves has caused widespread mass coral bleaching events, threatening the integrity and functional diversity of coral reefs. Here we demonstrate the role of inter-ocean coupling in amplifying thermal stress on reefs in the poorly studied southeast Indian Ocean (SEIO), through a robust 215-year (1795-2010) geochemical coral proxy sea surface temperature (SST) record. We show that marine heatwaves affecting the SEIO are linked to the behaviour of the Western Pacific Warm Pool on decadal to centennial timescales, and are most pronounced when an anomalously strong zonal SST gradient between the western and central Pacific co-occurs with strong La Niña's. This SST gradient forces large-scale changes in heat flux that exacerbate SEIO heatwaves. Better understanding of the zonal SST gradient in the Western Pacific is expected to improve projections of the frequency of extreme SEIO heatwaves and their ecological impacts on the important coral reef ecosystems off Western Australia.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Ecossistema , Temperatura Alta , Estresse Fisiológico/fisiologia , Animais , Oceano Índico , Oceano Pacífico , Água do Mar , Austrália Ocidental
8.
Nat Commun ; 5: 3607, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24686736

RESUMO

Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise.


Assuntos
Antozoários/crescimento & desenvolvimento , El Niño Oscilação Sul/história , Aquecimento Global/história , Água do Mar/química , Movimentos da Água , Animais , Antozoários/química , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Oceanografia/história , Temperatura , Austrália Ocidental
9.
Mar Pollut Bull ; 65(4-9): 306-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22030106

RESUMO

Coral cores were collected along an environmental and water quality gradient through the Whitsunday Island group, Great Barrier Reef (Australia), for trace element and stable isotope analysis. The primary aim of the study was to examine if this gradient could be detected in coral records and, if so, whether the gradient has changed over time with changing land use in the adjacent river catchments. Y/Ca was the trace element ratio which varied spatially across the gradient, with concentrations progressively decreasing away from the river mouths. The Ba/Ca and Y/Ca ratios were the only indicators of change in the gradient through time, increasing shortly after European settlement. The Mn/Ca ratio responded to local disturbance related to the construction of tourism infrastructure. Nitrogen isotope ratios showed no apparent trend over time. This study highlights the importance of site selection when using coral records to record regional environmental signals.


Assuntos
Antozoários/química , Recifes de Corais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Animais , Austrália , Rios/química , Oligoelementos/análise , Movimentos da Água , Poluição Química da Água/estatística & dados numéricos
10.
Science ; 291(5502): 290-3, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11209076

RESUMO

Milankovitch orbital forcing theory has been used to assign time scales to many paleoclimate records. However, the validity of this theory remains uncertain, and independent sea-level chronologies used to test its applicability have been restricted largely to the past approximately 135,000 years. Here, we report U-series ages for coral reefs formed on Henderson Island during sea-level high-stands occurring at approximately 630,000 and approximately 330,000 years ago. These data are consistent with the hypothesis that interglacial climates are forced by Northern Hemisphere summer solar insolation centered at 65 degrees N latitude, as predicted by Milankovitch theory.


Assuntos
Clima , Cnidários , Animais , Cnidários/química , Cnidários/crescimento & desenvolvimento , Espectrometria de Massas , Ilhas do Pacífico , Radioisótopos/análise , Água do Mar , Tório/análise , Tempo , Urânio/análise
11.
Science ; 291(5508): 1511-7, 2001 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-11222850

RESUMO

The El Niño-Southern Oscillation (ENSO) is the most potent source of interannual climate variability. Uncertainty surrounding the impact of greenhouse warming on ENSO strength and frequency has stimulated efforts to develop a better understanding of the sensitivity of ENSO to climate change. Here we use annually banded corals from Papua New Guinea to show that ENSO has existed for the past 130,000 years, operating even during "glacial" times of substantially reduced regional and global temperature and changed solar forcing. However, we also find that during the 20th century ENSO has been strong compared with ENSO of previous cool (glacial) and warm (interglacial) times. The observed pattern of change in amplitude may be due to the combined effects of ENSO dampening during cool glacial conditions and ENSO forcing by precessional orbital variations.


Assuntos
Clima , Cnidários , Fósseis , Sedimentos Geológicos , Animais , Cnidários/crescimento & desenvolvimento , Oceanos e Mares , Isótopos de Oxigênio , Papua Nova Guiné , Chuva , Estações do Ano , Temperatura , Oligoelementos
13.
J R Soc West Aust ; 79 Pt 1: 131-9, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11541323

RESUMO

The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4.56 Ga to approximately 4.3 Ga. This is consistent with large-scale planetary re-homogenisation during ongoing accretion of the Earth. The lack of isotopic anomalies in short-lived decay systems, together with the Pb and Sr isotopic constraints is thus consistent with core formation and accretion of the Earth occurring over an approximately 100 Ma interval following the formation of meteorites at 4.56 Ga.


Assuntos
Planeta Terra , Evolução Planetária , Chumbo , Lua , Gases/química , Groenlândia , Isótopos , Neodímio , Rubídio , Samário , Isótopos de Estrôncio , Urânio , Austrália Ocidental
14.
Science ; 200(4345): 1003-11, 1978 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-17740673

RESUMO

Samarium-neodymium and rubidium-strontium isotopic systematics together with plausible assumptions regarding the geochemical evlution of continental crust material, have been used to ascertain the times at which segments of continental crust were formed. Analyses of composites from the Canadian Shield representing portions of the Superior, Slave, and Churchill structural provinces indicate that these provinces were all formed within the period 2.5 to 2.7 aeons. It has been possible to determine the mean age of sediment provenances, as studies of sedimentary rocks suggest that the samarium-neodymium isotopic system is not substantially disturbed during sedimentation or diagenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA