Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(19)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36230893

RESUMO

Yeast Hmo1 is a high mobility group B (HMGB) protein that participates in the transcription of ribosomal protein genes and rDNA, and also stimulates the activities of some ATP-dependent remodelers. Hmo1 binds both DNA and nucleosomes and has been proposed to be a functional yeast analog of mammalian linker histones. We used EMSA and single particle Förster resonance energy transfer (spFRET) microscopy to characterize the effects of Hmo1 on nucleosomes alone and with the histone chaperone FACT. Hmo1 induced a significant increase in the distance between the DNA gyres across the nucleosomal core, and also caused the separation of linker segments. This was opposite to the effect of the linker histone H1, which enhanced the proximity of linkers. Similar to Nhp6, another HMGB factor, Hmo1, was able to support large-scale, ATP-independent, reversible unfolding of nucleosomes by FACT in the spFRET assay and partially support FACT function in vivo. However, unlike Hmo1, Nhp6 alone does not affect nucleosome structure. These results suggest physiological roles for Hmo1 that are distinct from Nhp6 and possibly from other HMGB factors and linker histones, such as H1.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Animais , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Mamíferos/metabolismo , Nucleossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição
2.
Commun Biol ; 5(1): 2, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013515

RESUMO

FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Ligação a DNA/química , Proteínas de Grupo de Alta Mobilidade/química , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química , Humanos , Microscopia Eletrônica de Transmissão , Dobramento de Proteína , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 50(2): 784-802, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967414

RESUMO

The conserved transcription elongation factor Spt6 makes several contacts with the RNA Polymerase II (RNAPII) complex, including a high-affinity interaction between the Spt6 tandem SH2 domain (Spt6-tSH2) and phosphorylated residues of the Rpb1 subunit in the linker between the catalytic core and the C-terminal domain (CTD) heptad repeats. This interaction contributes to generic localization of Spt6, but we show here that it also has gene-specific roles. Disrupting the interface affected transcription start site selection at a subset of genes whose expression is regulated by this choice, and this was accompanied by changes in a distinct pattern of Spt6 accumulation at these sites. Splicing efficiency was also diminished, as was apparent progression through introns that encode snoRNAs. Chromatin-mediated repression was impaired, and a distinct role in maintaining +1 nucleosomes was identified, especially at ribosomal protein genes. The Spt6-tSH2:Rpb1 interface therefore has both genome-wide functions and local roles at subsets of genes where dynamic decisions regarding initiation, transcript processing, or termination are made. We propose that the interaction modulates the availability or activity of the core elongation and histone chaperone functions of Spt6, contributing to coordination between RNAPII and its accessory factors as varying local conditions call for dynamic responses.


Assuntos
Chaperonas de Histonas/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Domínios de Homologia de src , Sítios de Ligação , Regulação da Expressão Gênica , Chaperonas de Histonas/química , Chaperonas de Histonas/genética , Humanos , IMP Desidrogenase/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Sítio de Iniciação de Transcrição , Transcrição Gênica , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
4.
Genetics ; 211(3): 877-892, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30679261

RESUMO

FACT (FAcilitates Chromatin Transcription/Transactions) is a histone chaperone that can destabilize or assemble nucleosomes. Acetylation of histone H3-K56 weakens a histone-DNA contact that is central to FACT activity, suggesting that this modification could affect FACT functions. We tested this by asking how mutations of H3-K56 and FACT affect nucleosome reorganization activity in vitro, and chromatin integrity and transcript output in vivo Mimics of unacetylated or permanently acetylated H3-K56 had different effects on FACT activity as expected, but the same mutations had surprisingly similar effects on global transcript levels. The results are consistent with emerging models that emphasize FACT's importance in establishing global chromatin architecture prior to transcription, promoting transitions among different states as transcription profiles change, and restoring chromatin integrity after it is disturbed. Optimal FACT activity required the availability of both modified and unmodified states of H3-K56. Perturbing this balance was especially detrimental for maintaining repression of genes with high nucleosome occupancy over their promoters and for blocking antisense transcription at the +1 nucleosome. The results reveal a complex collaboration between H3-K56 modification status and multiple FACT functions, and support roles for nucleosome reorganization by FACT before, during, and after transcription.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Código das Histonas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo , Acetilação , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
5.
J Biol Chem ; 293(16): 6121-6133, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514976

RESUMO

The essential histone chaperone FACT (facilitates chromatin transcription) promotes both nucleosome assembly and disassembly. FACT is a heterodimer of Spt16 with either SSRP1 or Pob3, differing primarily by the presence of a high-mobility group B (HMGB) DNA-binding domain furnished only by SSRP1. Yeast FACT lacks the intrinsic HMGB domain found in SSRP1-based homologs such as human FACT, but yeast FACT activity is supported by Nhp6, which is a freestanding, single HMGB-domain protein. The importance of histone binding by FACT domains has been established, but the roles of DNA-binding activity remain poorly understood. Here, we examined these roles by fusing single or multiple HMGB modules to Pob3 to mimic SSRP1 or to test the effects of extended DNA-binding capacity. Human FACT and a yeast mimic both required Nhp6 to support nucleosome reorganization in vitro, indicating that a single intrinsic DNA-binding HMGB module is insufficient for full FACT activity. Three fused HMGB modules supported activity without Nhp6 assistance, but this FACT variant did not efficiently release from nucleosomes and was toxic in vivo Notably, intrinsic DNA-binding HMGB modules reduced the DNA accessibility and histone H2A-H2B dimer loss normally associated with nucleosome reorganization. We propose that DNA bending by HMGB domains promotes nucleosome destabilization and reorganization by exposing FACT's histone-binding sites, but DNA bending also produces DNA curvature needed to accommodate nucleosome assembly. Intrinsic DNA-bending activity therefore favors nucleosome assembly by FACT over nucleosome reorganization, but excessive activity impairs FACT release, suggesting a quality control checkpoint during nucleosome assembly.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/química , Humanos , Modelos Teóricos , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
6.
Nat Struct Mol Biol ; 23(12): 1111-1116, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27820806

RESUMO

DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , DNA Fúngico/química , Proteínas de Ligação a DNA/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Grupo de Alta Mobilidade/química , Histonas/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/química , Ligação Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química
7.
Mol Cell ; 60(2): 294-306, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26455391

RESUMO

FACT, a heterodimer of Spt16 and Pob3, is an essential histone chaperone. We show that the H2A-H2B binding activity that is central to FACT function resides in short acidic regions near the C termini of each subunit. Mutations throughout these regions affect binding and cause correlated phenotypes that range from mild to lethal, with the largest individual contributions unexpectedly coming from an aromatic residue and a nearby carboxylate residue within each domain. Spt16 and Pob3 bind overlapping sites on H2A-H2B, and Spt16-Pob3 heterodimers simultaneously bind two H2A-H2B dimers, the same stoichiometry as the components of a nucleosome. An Spt16:H2A-H2B crystal structure explains the biochemical and genetic data, provides a model for Pob3 binding, and implies a mechanism for FACT reorganization that we confirm biochemically. Moreover, unexpected similarity to binding of ANP32E and Swr1 with H2A.Z-H2B reveals that diverse H2A-H2B chaperones use common mechanisms of histone binding and regulating nucleosome functions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/química , Histonas/genética , Modelos Moleculares , Dados de Sequência Molecular , Nucleossomos/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética
8.
J Biol Chem ; 288(15): 10188-94, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23417676

RESUMO

The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Grupo de Alta Mobilidade/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA