Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(6): 3514-3523, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33645219

RESUMO

Ruthenium(II) polypyridyl complexes [Ru(CN-Me-bpy)x(bpy)3-x]2+ (CN-Me-bpy = 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, and x = 1-3, abbreviated as 12+, 22+, and 32+) undergo four (12+) or five (22+ and 32+) successive one-electron reduction steps between -1.3 and -2.75 V versus ferrocenium/ferrocene (Fc+/Fc) in tetrahydrofuran. The CN-Me-bpy ligands are reduced first, with successive one-electron reductions in 22+ and 32+ being separated by 150-210 mV; reduction of the unsubstituted bpy ligand in 12+ and 22+ occurs only when all CN-Me-bpy ligands have been converted to their radical anions. Absorption spectra of the first three reduction products of each complex were measured across the UV, visible, near-IR (NIR), and mid-IR regions and interpreted with the help of density functional theory calculations. Reduction of the CN-Me-bpy ligand shifts the ν(C≡N) IR band by ca. -45 cm-1, enhances its intensity ∼35 times, and splits the symmetrical and antisymmetrical modes. Semireduced complexes containing two and three CN-derivatized ligands 2+, 3+, and 30 show distinct ν(C≡N) features due to the presence of both CN-Me-bpy and CN-Me-bpy•-, confirming that each reduction is localized on a single ligand. NIR spectra of 10, 1-, and 2- exhibit a prominent band attributable to the CN-Me-bpy•- moiety between 6000 and 7500 cm-1, whereas bpy•--based absorption occurs between 4500 and 6000 cm-1; complexes 2+, 3+, and 30 also exhibit a band at ca. 3300 cm-1 due to a CN-Me-bpy•- → CN-Me-bpy interligand charge-transfer transition. In the UV-vis region, the decrease of π → π* intraligand bands of the neutral ligands and the emergence of the corresponding bands of the radical anions are most diagnostic. The first reduction product of 12+ is spectroscopically similar to the lowest triplet metal-to-ligand charge-transfer excited state, which shows pronounced NIR absorption, and its ν(C≡N) IR band is shifted by -38 cm-1 and 5-7-fold-enhanced relative to the ground state.

2.
J Phys Chem A ; 123(46): 10011-10018, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31665606

RESUMO

Photocatalysis is a promising method to harness solar energy and use it to form fuels and other high-value chemicals, but most sensitizers used in photocatalytic reactions are complexes of rare and expensive metals such as ruthenium and iridium. Zinc dipyrromethene complexes have potential to be a more earth-abundant alternative, but their photophysical properties are largely unexplored. In this study, triplet state formation was quantified in two zinc dipyrromethene complexes, with and without heavy atoms, by transient absorption spectroscopy. Without heavy atoms, the triplet quantum yield was 16% in toluene and 27% in THF. With the addition of heavy I atoms, the triplet quantum yield increased to 62-63% and was insensitive to solvent polarity. The fact that in the absence of heavy atoms the triplet yield is affected by solvent polarity and in the presence of heavy atoms it is not suggests that triplet formation occurs through different pathways in the two complexes. These triplet yields meet or exceed those of successful organic photosensitizers, illustrating the potential for zinc dipyrromethene complexes as photosensitizers.

3.
J Phys Chem A ; 122(40): 7941-7953, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30265538

RESUMO

Ultrafast time-resolved electronic and infrared absorption measurements have been carried out on a series of Ru(II) polypyridyl complexes in an effort to delineate the dynamics of vibrational relaxation in this class of charge transfer chromophores. Time-dependent density functional theory calculations performed on compounds of the form [Ru(CN-Me-bpy) x(bpy)3-x]2+ ( x = 1-3 for compounds 1-3, respectively, where CN-Me-bpy is 4,4'-dicyano-5,5'-dimethyl-2,2'-bipyridine and bpy is 2,2'-bipyridine) reveal features in their charge-transfer absorption envelopes that allow for selective excitation of the Ru(II)-(CN-Me-bpy) moiety, the lowest-energy MLCT state(s) in each compound of the series. Changes in band shape and amplitude of the time-resolved differential electronic absorption data are ascribed to vibrational cooling in the CN-Me-bpy-localized 3MLCT state with a time constant of 8 ± 3 ps in all three compounds. This conclusion was corroborated by picosecond time-resolved infrared absorption measurements; sharpening of the CN stretch in the 3MLCT excited state was observed with a time constant of 3.0 ± 1.5 ps in all three members of the series. Electronic absorption data acquired at higher temporal resolution revealed spectral modulation over the first 2 ps occurring with a time constant of τ = 170 ± 50 fs, in compound 1; corresponding effects are significantly attenuated in compound 2 and virtually absent in compound 3. We assign this feature to intramolecular vibrational redistribution (IVR) within the 3MLCT state and represents a rare example of this process being identified from time-resolved electronic absorption data for this important class of chromophores.

4.
Inorg Chem ; 57(4): 2296-2307, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29393633

RESUMO

A computationally inspired Cu(I) metal-to-ligand charge transfer (MLCT) chromophore, [Cu(sbmpep)2]+ (sbmpep = 2,9-di(sec-butyl)-3,8-dimethyl-4,7-di(phenylethynyl)-1,10-phenanthroline), was synthesized in seven total steps, prepared from either dichloro- or dibromophenanthroline precursors. Complete synthesis, structural characterization, and electrochemistry, in addition to static and dynamic photophysical properties of [Cu(sbmpep)2]+, are reported on all relevant time scales. UV-Vis absorption spectroscopy revealed significant increases in oscillator strength along with a concomitant bathochromic shift in the MLCT absorption bands with respect to structurally related model complexes (ε = 16 500 M-1 cm-1 at 491 nm). Strong red photoluminescence (Φ = 2.7%, λmax = 687 nm) was observed from [Cu(sbmpep)2]+, which featured an average excited-state lifetime of 1.4 µs in deaerated dichloromethane. Cyclic and differential pulse voltammetry revealed ∼300 mV positive shifts in the measured one-electron reversible reduction and oxidation waves in relation to a Cu(I) model complex possessing identical structural elements without the π-conjugated 4,7-substituents. The excited-state redox potential of [Cu(sbmpep)2]+ was estimated to be -1.36 V, a notably powerful reductant for driving photoredox chemistry. The combination of conventional and ultrafast transient  absorption and luminescence spectroscopy successfully map the excited-state dynamics of [Cu(sbmpep)2]+ from initial photoexcitation to the formation of the lowest-energy MLCT excited state and ultimately its relaxation to the ground state. This newly conceived molecule appears poised for photosensitization reactions involving energy and electron-transfer processes relevant to photochemical upconversion, photoredox catalysis, and solar fuels photochemistry.

5.
ACS Macro Lett ; 6(9): 920-924, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35650891

RESUMO

When designing photoresponsive materials, the impact of a polymer host matrix on the photophysical and photochemical properties of chromophores can be dramatic and advantageous for correlating macromolecular properties. Some compounds possess changes in their photophysical response with variation in the surrounding media (e.g., crystalline glass vs solution). This study demonstrates how changes in the excited state dynamics of [Cu(dmp)2]+, where dmp = 2,9-dimethyl-1,10-phenanthroline, are used to quantitatively probe the viscosity of the surrounding polymer matrix. A correlation of both excited state lifetime and photoluminescence emission wavelength on viscosity was observed in different supramolecular materials containing [Cu(dmp)2]+. These effects were attributed to restricted photoinduced structural distortion of the Cu(I) complex as the polymer matrix hardened. This photoluminescence sensor features a greater dynamic range for viscosity sensing (6 orders of magnitude) and displayed larger changes in lifetime response with respect to typical organometallic mechanosensitive probes.

6.
Inorg Chem ; 55(20): 10628-10636, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27679932

RESUMO

In the interest of expanding the inventory of available long lifetime, photochemically robust, and strongly reducing Cu(I) MLCT sensitizers, we present detailed structural, photophysical, and electrochemical characterization of [Cu(dipp)2]+, dipp = 2,9-diisopropyl-1,10-phenanthroline, and its sterically encumbered tetramethyl analogue [Cu(diptmp)2]+, diptmp = 2,9-diisopropyl-3,4,7,8-tetramethyl-1,10-phenanthroline. The achiral isopropyl substituents enable similar steric bulk effects to the previously investigated sec-butyl substituents while eliminating the complex NMR structural analyses associated with the presence of two chiral centers in the latter. The photophysical properties of [Cu(diptmp)2]+ are impressive, possessing a 2.3 µs lifetime in deaerated CH2Cl2 and a photoluminescence quantum yield of 4.7%, which were slightly attenuated in coordinating tetrahydrofuran (THF) solutions. Nanosecond transient absorption spectroscopy results matched the transient photoluminescence kinetics enabling complete characterization of MLCT excited-state decay in these molecules. The calculated excited-state potential for the Cu2+/Cu+* couple (E = -1.74 V vs Fc+/0) indicated that [Cu(diptmp)2]+* is a strong photoreductant potentially useful for myriad applications. Ultrafast transient absorption measurements performed in THF solutions are also reported, yielding the relative time scales for both the pseudo-Jahn-Teller distortion (0.4-0.8 ps in [Cu(dipp)2]+ and 0.12-0.5 ps in [Cu(diptmp)2]+) and singlet-triplet intersystem crossing (6.4-10.1 ps for [Cu(dipp)2]+ and 3.5-5.4 ps for [Cu(diptmp)2]+) within these molecules. The disparity in the time scales of pseudo-Jahn-Teller distortion and intersystem crossing between two complexes with different anticipated excited-state geometries suggests that strongly impeded structural distortion in the MLCT excited state (i.e., [Cu(diptmp)2]+) enables more rapid surface crossings in the initial deactivation dynamics.

7.
Top Curr Chem (Cham) ; 374(2): 19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27573144

RESUMO

This review features recent experimental work focused on the preparation and characterization of materials that integrate photochemical upconversion derived from sensitized triplet-triplet annihilation, resulting in the conversion of low energy photons to higher energy light, thereby enabling numerous wavelength-shifting applications. Recent topical developments in upconversion include encapsulating or rigidifying fluid solutions to give them mechanical strength, adapting inert host materials to enable upconversion, and using photoactive materials that incorporate the sensitizer and/or the acceptor. The driving force behind translating photochemical upconversion from solution into hard and soft materials is the incorporation of upconversion into devices and other applications. At present, some of the most promising applications of upconversion materials include imaging and fluorescence microscopy, photoelectrochemical devices, water disinfection, and solar cell enhancement.

8.
Dalton Trans ; 44(41): 17906-10, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26415876

RESUMO

This treatment highlights the historical development of MLCT sensitizers in photochemical upconversion while indentifying current state-of-the-art and exciting opportunities in this arena moving towards the future.

9.
Inorg Chem ; 54(12): 6035-42, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26035640

RESUMO

The current investigation compares the photochemical upconversion sensitization properties of two long lifetime Cu(I) metal-to-ligand charge transfer (MLCT) chromophores to 3 distinct anthryl-based triplet acceptors. The sensitizers [Cu(dsbtmp)2](PF6) (1, dsbtmp = 2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline) and [Cu(dsbp)2](PF6) (2, dsbp = 2,9-di(sec-butyl-1,10-phenanthroline) were selectively excited in the presence of anthracene, 9,10-diphenylanthracene (DPA), and 9,10-dimethylanthracene (DMA) in degassed dichloromethane solutions. In all instances, triplet energy transfer was observed from selective excitation of the Cu(I) MLCT chromophore to each respective anthryl species. The bimolecular triplet-triplet energy transfer quenching rate constants were extracted from dynamic Stern-Volmer analyses in each case, yielding values below the diffusion limit in dichloromethane. However, the Stern-Volmer quenching constants (KSV's) were sizable enough (up to ∼2300 M(-1) with 1 as a sensitizer) to support efficient photochemical upconversion. As such, visible to near-UV photochemical upconversion was observed in every instance, along with the anticipated quadratic-to-linear incident light power dependence when pumping at 488 nm. The latter verified that it is indeed sensitized triplet-triplet annihilation responsible for the generation of the anthryl-based singlet fluorescence. Photochemical upconversion quantum efficiencies were evaluated using a relative actinometric method as both a function of incident light power density as well as anthryl acceptor/annihilator concentration. When 1 was used as the sensitizer, upconversion quantum yields as large as 9.2% and 17.8% were observed for DMA and DPA, respectively. Finally, the combination of 1 with DMA was shown to be quite robust, showing no obvious signs of decomposition during 12 h of continuous 488 nm photolysis.

10.
J Phys Chem A ; 119(13): 3181-93, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25751569

RESUMO

Subpicosecond through supra-nanosecond transient absorption dynamics of the homoleptic Cu(I) metal-to-ligand charge transfer (MLCT) photosensitizers including the benchmark [Cu(dmp)2](+) (dmp =2,9-dimethyl-1,10-phenanthroline) chromophore, as well as [Cu(dsbp)2](+) (dsbp =2,9-di(sec-butyl)-1,10-phenanthroline and [Cu(dsbtmp)2](+) (dsbtmp =2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline) were investigated in dichloromethane and tetrahydrofuran solutions. Visible and near-IR spectroelectrochemical measurements of the singly reduced [Cu(dsbp)2](+) and [Cu(dsbtmp)2](+) species were determined in tetrahydrofuran, allowing for the identification of redox-specific phenanthroline-based radical anion spectroscopic signatures prevalent in the respective transient absorption experiments. This study utilized four different excitation wavelengths (418, 470, 500, and 530 nm) to elucidate dynamics on ultrafast times scales spanning probe wavelengths ranging from the UV to the near-IR (350 to 1450 nm). With the current time resolution of ∼150 fs, initial excited state decay in all three compounds was found to be independent of excitation wavelength. Not surprisingly, there was little to no observed influence of solvent in the initial stages of excited state decay in any of these molecules including [Cu(dmp)2](+), consistent with results from previous investigators. The combined experimental data revealed two ranges of time constants observed on short time scales in all three MLCT chromophores and both components lengthen as a function of structure in the following manner: [Cu(dsbtmp)2](+) < [Cu(dsbp)2](+) < [Cu(dmp)2](+). The molecule with the most inhibited potential for distortion, [Cu(dsbtmp)2](+), possessed the fastest ultrafast dynamics as well as the longest excited state lifetimes in both solvents. These results are consistent with a small degree of excited state distortion, rapid intersystem crossing, and weak vibronic coupling to the ground state. The concomitant systematic variation in both initial time constants, assigned to pseudo-Jahn-Teller distortion and intersystem crossing, suggest that both processes are intimately coupled in all molecules in the series. The variability in these time scales illustrate that strongly impeded structural distortion in Cu(I) MLCT excited state enables more rapid surface crossings in the initial deactivation dynamics.

11.
Inorg Chem ; 53(23): 12564-71, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25394202

RESUMO

The synthesis, structural characterization, and excited-state dynamics of series of diketopyrrolopyrrole (DPP) bridged homodinuclear Ir(III) and heterodinuclear Ir(III)/Pt(II) complexes is described. Steady-state and time-resolved photoluminescence along with transient absorption measurements were used to probe the nature of the emissive and long-lived excited states. Upon excitation into the (1)DPP ligand-localized excited state in the presence of coordinated Ir(III) or Pt(II) metal centers, the intersystem crossing is enhanced, leading to a quenching of the (1)DPP fluorescence and the formation of the long-lived (τ ≈ 30-40 µs) (3)DPP excited state in all instances.

12.
Dalton Trans ; 43(47): 17635-46, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25321952

RESUMO

Identification of transient species is a necessary part of delineating the kinetics and mechanisms associated with chemical dynamics; when dealing with photo-induced processes, this can be an exceptionally challenging task due to the fact that spectra associated with excited state(s) sampled over the course of a photochemical event often cannot be uniquely identified nor readily calculated. Using Group 8 complexes of the general form [M(terpy)2](2+) and [M(bpy)3](2+) as a platform (where terpy is 2,2':6',2''-terpyridine and bpy is 2,2'-bipyridine), we demonstrate how spectroelectrochemical measurements can serve as an effective tool for identifying spectroscopic signatures of charge-transfer excited states of transition metal-based chromophores. Formulating the metal-to-ligand charge-transfer (MLCT) excited state(s) as M(3+)-L(-), the extent to which a linear combination of the spectra of the oxidized and reduced forms of the parent complexes can be used to simulate the characteristic absorptions of MLCT-based transient species is examined. Quantitative agreement is determined to be essentially unachievable due to the fact that certain transitions associated with the optically prepared excited states are either overcompensated for in the spectroelectrochemical data, or simply cannot be replicated through electrochemical means. Despite this limitation, it is shown through several illustrative examples that this approach can still be extremely useful as a qualitative if not semi-quantitative guide for interpreting time-resolved electronic absorption data of charge-transfer compounds, particularly in the ultrafast time domain.

13.
J Phys Chem A ; 118(45): 10391-9, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24910889

RESUMO

Covalently linking two square planar platinum(II) centers using two pyrazolate bridging ligands allows the filled dz(2) orbitals on each Pt center to overlap, producing a Pt-Pt σ interaction and new low energy dσ* → π* metal-metal-to-ligand charge transfer (MMLCT) transitions terminating on an appropriate π-acceptor ligand such as 2-phenylpyridine (ppy). In an effort to extend the lifetime of the associated MMLCT excited state, we decided to append piperidinyl naphthalimide (PNI) chromophores to the 2-phenylpyridine charge transfer ligands. This structural modification introduces low-lying PNI-based triplet states serving as long-lived triplet population reservoirs, thermally capable of repopulating the charge transfer state at room temperature (RT), thereby extending its excited state lifetime. Specifically, [Pt(PNI-ppy)(µ-Ph2pz)]2 (1), where PNI-ppy is N-(2-phenylpyridine)-4-(1-piperidinyl)naphthalene-1,8-dicarboximide and Ph2pz is 3,5-diphenylpyrazolate, was synthesized and structurally characterized. The static and dynamic photophysical behavior of 1 was directly compared to the MMLCT complex [Pt(ppy)(µ-Ph2pz)]2 (2), lacking the PNI substituents, as well as the naked PNI-ppy ligand 3, intended to independently model the MMLCT and NI excited state properties, respectively. Ultimately, experimental evidence for the presence of both the (3)PNI and (3)MMLCT excited states in 1 were revealed at RT in nanosecond transient absorbance and time-resolved photoluminescence spectroscopy, respectively. Temperature-dependent transient absorption spectroscopy permitted the extraction of an energy gap of 1740 cm(-1) between the MMLCT and PNI triplet states in 1 along with the time constants associated with the interconversions between the various excited states resident on this complex chromophore, ultimately decaying back to the ground state with a time constant of 65 µs at RT.

14.
J Am Chem Soc ; 135(38): 14068-70, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24028290

RESUMO

The Cu(I) metal-to-ligand charge-transfer complex, [Cu(dsbtmp)2](+) (dsbtmp = 2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline), exhibits outstanding stability as a visible-light-absorbing photosensitizer in hydrogen-evolving homogeneous photocatalysis. In concert with the Co(dmgH)2(py)Cl water reduction catalyst and N,N-dimethyl-p-toluidine sacrificial donor in 1:1 H2O:CH3CN, this Cu(I) sensitizer remains active even after 5 days of visible-light-pumped (λex = 452 ± 10 nm) hydrogen evolution catalysis. Deuteration studies illustrate that the hydrogen produced from this composition does indeed originate from aqueous protons.

15.
Inorg Chem ; 52(15): 8495-504, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23865471

RESUMO

The synthesis, X-ray structures, photophysical, and electrochemical characterization of mono- (1) and dinuclear (2) cationic iridium(III) complexes bearing a 2,5-dipyridylpyrazine (2,5-dpp) ancillary ligand are reported. Upon the complexation of a first equivalent of iridium, the photoluminescence shifts markedly into the deep red (λem = 710 nm, ΦPL = 0.9%) compared to other cationic iridium complexes such as [Ir(ppy)2(bpy)]PF6. With the coordination of a second equivalent of iridium, room temperature luminescence is completely quenched. Both 1 and 2 are luminescent at low temperatures but with distinct excited state decay kinetics; the emission of 2 is significantly red-shifted compared to 1. Emission both at 298 and 77 K results from a mixed charge-transfer state. Density functional theory (DFT) calculations and electrochemical behavior point to an electronic communication between the two iridium complexes.


Assuntos
Irídio/química , Compostos Organometálicos/química , Pirazinas/química , Cristalografia por Raios X , Eletroquímica , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química
16.
Inorg Chem ; 52(15): 8795-804, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23844761

RESUMO

Electronic structure and photophysical properties have been investigated for a new series of fluorinated iridium complexes with the parent [Ir(ppy)2(deeb)](PF6) (deeb is 4,4'-diethylester-2,2'-bipyridine). Time resolved infrared spectroscopy (TRIR) has been used to observe the long-lived triplet excited state of each complex confirming its mixed charge transfer character. Supplementary evidence of charge transfer in the triplet state is provided via emission spectroscopy, transient absorption spectroscopy, and density functional theory (DFT) calculations. Both computational and spectroscopic assignments reveal consistency in the first excitation throughout the series of complexes. Electrochemical measurements meanwhile show that increasing fluorination still induces expected shifting of frontier orbitals. Excited states beyond the lowest lying triplet are probed for the complexes via UV-vis spectroscopy which reveals three distinct features. These features are assigned via time-dependent DFT (TD-DFT) to build a broader understanding of electronic structure.


Assuntos
Irídio/química , Compostos Organometálicos/química , Teoria Quântica , Eletroquímica , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Espectrofotometria Infravermelho
17.
Inorg Chem ; 52(14): 8114-20, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23789625

RESUMO

A new homoleptic Cu(I) photosensitizer, [Cu(dsbtmp)2](+) (dsbtmp = 2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline), designed to exhibit cooperative steric hindrance, unexpectedly produced strong photoluminescence (Φ = 1.9-6.3%) and long excited state lifetimes (τ = 1.2-2.8 µs) in a broad range of coordinating and noncoordinating solvents. The combination of the 2,9-sec-butyl substituents with the neighboring 3,8-methyl groups led to a Cu(I) complex with small degrees of ground and excited state distortion ultimately producing a molecule with robust metal-to-ligand charge transfer photophysics largely insulated from solvent interactions, reversible redox chemistry serving as a strong excited state reductant, along with impressive thermodynamic and photochemical stability in solution.

18.
Chem Commun (Camb) ; 49(34): 3537-9, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23525194

RESUMO

A synthetically facile and earth abundant Cu(I) metal-to-ligand charge transfer sensitizer was successfully incorporated into two distinct photochemical upconversion schemes, affording red-to-green and orange-to-blue wavelength conversions.

19.
Chemistry ; 18(37): 11569-72, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22907889

RESUMO

Square feat: The synthesis, isolation, and characterization of five novel bisterpyridine-based metallomacrocycles, possessing a folded tetrameric configuration is reported (see figure). The initial dimeric building block with the stable linear {tpy-Ru(II)-tpy} connectivity circumvents the formation of the thermodynamically favored molecular triangles.


Assuntos
Compostos Organometálicos/química , Piridinas/química , Rutênio/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
20.
Inorg Chem ; 51(15): 8589-98, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22808997

RESUMO

The synthesis, electrochemistry, and photophysical behavior of a Pt(II) terpyridyl perylenediimide (PDI) acetylide (1) charge-transfer complex is reported. The title compound exhibits strong (ε ≈ 5 × 10(4) M(-1)cm(-1)) low-energy PDI acetylide-based π-π* absorption bands in the visible range extending to 600 nm, producing highly quenched singlet fluorescence (Φ = 0.014 ± 0.001, τ = 109 ps) with respect to a nonmetalated PDI model chromophore. Nanosecond transient absorption spectroscopy revealed the presence of a long excited-state lifetime (372 ns in 2-methyltetrahydrofuran) with transient features consistent with the PDI-acetylide triplet state, ascertained by direct comparison to a model Pt(II) PDI-acetylide complex lacking low-energy charge-transfer transitions. For the first time, time-resolved step-scan FT-IR spectroscopy was used to characterize the triplet excited state of the PDI-acetylide sensitized in the title compound and its associated model complex. The observed red shifts (∼30-50 cm(-1)) in the C═O and C≡C vibrations of the two Pt(II) complexes in the long-lived excited state are consistent with formation of the (3)PDI acetylide state and found to be in excellent agreement with the expected change in the relevant DFT-calculated IR frequencies in the nonmetalated PDI model chromophore (ground singlet state and lowest triplet excited state). Formation of the PDI triplet excited state in the title chromophore was also supported by sensitization of the singlet oxygen photoluminescence centered at ∼1275 nm in air-saturated acetonitrile solution, Φ((1)O(2)) = 0.52. In terms of light emission, only residual PDI-based red fluorescence could be detected and no corresponding PDI-based phosphorescence was observed in the visible or NIR region at 298 or 77 K in the Pt(II) terpyridyl perylenediimideacetylide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA