Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 3(7): 708-714, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28776012

RESUMO

The iconic helical structure of DNA is stabilized by the solvation environment, where a change in the hydration state can lead to dramatic changes to the DNA structure. X-ray diffraction experiments at cryogenic temperatures have shown crystallographic water molecules in the minor groove of DNA, which has led to the notion of a spine of hydration of DNA. Here, chiral nonlinear vibrational spectroscopy of two DNA sequences shows that not only do such structural water molecules exist in solution at ambient conditions but that they form a chiral superstructure: a chiral spine of hydration. This is the first observation of a chiral water superstructure templated by a biomolecule. While the biological relevance of a chiral spine of hydration is unknown, the method provides a direct way to interrogate the properties of the hydration environment of DNA and water in biological settings without the use of labels.

2.
J Phys Chem B ; 119(38): 12417-23, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26322867

RESUMO

Chiral sum frequency generation spectroscopy (SFG) is of great interest for studying biological systems, among others. Whereas the chiral response in circular dichroism is about 0.1% of the achiral response, the chiral SFG response can be the same order of magnitude as the achiral SFG signal. However, chiral SFG is limited by the attainable signal-to-noise of the weak nonlinear signals and therefore extremely sensitive to proper alignment. We present a robust method for chiral SFG and demonstrate the use on solid-air surfaces with achiral and chiral molecules. We simultaneously measure two orthogonal polarizations-either the interference chiral SFG (±45° polarized) or the pure chiral and achiral SFG-using a waveplate and beam displacer. Both optics are placed in the detection arm and can be easily incorporated into any SFG setup. Furthermore, we employ self-referencing to calibrate alignment for each sample individually using a polarizer in the detection arm. These methods greatly increase the reliability and quality of chiral SFG measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA