Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Vox Sang ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754952

RESUMO

BACKGROUND AND OBJECTIVES: Blood safety measures used by blood establishments to increase blood component safety can be validated using Transfusion-Relevant Bacterial Reference Strains (TRBRS). Ultra-cold storage conditions and manual preparation of the current TRBRS may restrict their practical use. To address this issue, the ISBT Transfusion-Transmitted Infectious Diseases Working Party's Bacterial Subgroup organized an international study to validate TRBRS in a user-friendly, lyophilised format. MATERIALS AND METHODS: Two bacterial strains Klebsiella pneumoniae PEI-B-P-08 and Staphylococcus aureus PEI-B-P-63 were manufactured as lyophilised material. The lyophilised bacteria were distributed to 11 different labs worldwide to assess the robustness for enumeration, identification and determination of growth kinetics in platelet concentrates (PCs). RESULTS: Production of lyophilised TRBRS had no impact on the growth properties compared with the traditional format. The new format allows a direct low-quantity spiking of approximately 30 bacteria in PCs for transfusion-relevant experiments. In addition, the lyophilised bacteria exhibit long-term stability across a broad temperature range and can even be directly rehydrated in PCs without losing viability. Interlaboratory comparative study demonstrated the robustness of the new format as 100% of spiked PC exhibited growth. CONCLUSION: Lyophilised TRBRS provide a user-friendly material for transfusion-related studies. TRBRS in the new format have improved features that may lead to a more frequent use in the quality control of transfusion-related safety measures in the future.

2.
Vox Sang ; 119(7): 693-701, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38631895

RESUMO

BACKGROUND AND OBJECTIVES: Platelet concentrates (PC) are stored at 20-24°C to maintain platelet functionality, which may promote growth of contaminant bacteria. Alternatively, cold storage of PC limits bacterial growth; however, data related to proliferation of psychotrophic species in cold-stored PC (CSP) are scarce, which is addressed in this study. MATERIALS AND METHODS: Eight laboratories participated in this study with a pool/split approach. Two split PC units were spiked with ~25 colony forming units (CFU)/PC of Staphylococcus aureus, Klebsiella pneumoniae, Serratia liquefaciens, Pseudomonas fluorescens and Listeria monocytogenes. One unit was stored under agitation at 20-24°C/7 days while the second was stored at 1-6°C/no agitation for 21 days. PC were sampled periodically to determine bacterial loads. Five laboratories repeated the study with PC inoculated with lyophilized inocula (~30 CFU/mL) of S. aureus and K. pneumoniae. RESULTS: All species proliferated in PC stored at 20-24°C, reaching concentrations of ≤109 CFU/mL by day 7. Psychrotrophic P. fluorescens and S. liquefaciens proliferated in CSP to ~106 CFU/mL and ~105 CFU/mL on days 10 and 17 of storage, respectively, followed by L. monocytogenes, which reached ~102 CFU/mL on day 21. S. aureus and K. pneumoniae did not grow in CSP. CONCLUSION: Psychrotrophic bacteria, which are relatively rare contaminants in PC, proliferated in CSP, with P. fluorescens reaching clinically significant levels (≥105 CFU/mL) before day 14 of storage. Cold storage reduces bacterial risk of PC to levels comparable with RBC units. Safety of CSP could be further improved by implementing bacterial detection systems or pathogen reduction technologies if storage is beyond 10 days.


Assuntos
Plaquetas , Preservação de Sangue , Humanos , Plaquetas/microbiologia , Preservação de Sangue/métodos , Temperatura Baixa , Bactérias/crescimento & desenvolvimento
3.
Vox Sang ; 118(8): 656-665, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37272122

RESUMO

BACKGROUND AND OBJECTIVES: Blood transfusion centres ensure the quality and safety of transfusable blood components. However, septic transfusion reactions involving environmental contaminants occur. An international survey issued by the ISBT Transfusion-Transmitted Infectious Diseases Working Party (ISBT-TTID-WP) Bacterial Subgroup aimed to collect information regarding microbiological environmental monitoring from transfusion services. MATERIALS AND METHODS: A Form survey (English and Spanish) with 35 questions was sent to ISBT-TTID-WP members. The survey had four sections: (1) respondent personal information, (2) cleaning/disinfection practices during blood component manufacturing, (3) cleaning/disinfection practices during blood component storage and (4) blood component storage bag integrity. Respondents completed the survey electronically, and data were comparatively analysed using Microsoft Excel. RESULTS: There were 49 responses from 20 countries. Five of 49 sites manufacture blood components in a cleanroom, and most use personal protective equipment, although the type varied between sites. Approximately 40% of sites perform environmental monitoring during blood component production, with seven sites providing details about frequency and methods. Most (~94%) centres have procedures for cleaning/disinfection of processing and storage facilities with varying responses regarding areas, frequency and methods. Inconsistency was reported regarding the orientation of platelet component incubation (portrait vs. landscape). Over 93% of sites assess storage bag integrity and report damage to manufacturers, and 49% of centres report septic transfusion reactions potentially linked to damaged storage containers. CONCLUSION: Data from this survey highlight the need for consensual guidelines for transfusion services regarding cleaning and disinfection practices. Environmental monitoring could be adopted to minimize the risk of blood component contamination for transfusion patient safety.


Assuntos
Doenças Transmissíveis , Reação Transfusional , Humanos , Transfusão de Sangue , Transfusão de Componentes Sanguíneos/métodos , Bactérias , Inquéritos e Questionários
4.
Vox Sang ; 118(7): 543-550, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37170419

RESUMO

BACKGROUND AND OBJECTIVES: Staphylococcus aureus is a predominant contaminant of platelet concentrates (PCs) that can evade detection during screening with culture methods. Importantly, S. aureus produces staphylococcal enterotoxins (SEs) during PC storage, which are linked to slow growth and enhanced biofilm formation. This study investigated timing of SE production during PC storage and feasibility of SE detection as a PC safety strategy. MATERIALS AND METHODS: Genomic and transcriptomic data of transfusion-relevant S. aureus PS/BAC/169/17/W, PS/BAC/317/16/W, CI/BAC/25/13/W and CBS2016-05 were used to determine the presence and differential expression of exotoxin genes in PCs. Trypticase soy broth (TSB) and PCs were inoculated with 1.0E+06 cfu/mL of S. aureus PS/BAC/169/17/W and CBS2016-05. Expression of SEs at different growth phases was confirmed with Western blotting. PCs were inoculated with 30 cfu/unit of the same strains, and SE detection during PC storage was optimized with a sandwich dot-ELISA assay. RESULTS: S. aureus genomes contain multiple exotoxin genes including those encoding for SEs. Transcriptome data revealed significant upregulation (0.5-6.7-fold, p < 0.05) of SE genes in PCs versus TSB. Western blots demonstrated SE production at all growth phases. Notably, dot-ELISA detected clinically relevant concentrations of SEs (~0.2 µg/mL) at 32 h of PC storage when S. aureus PS/BAC/169/17/W and CBS2016-05 counts were 1.8E+04 and 1.4E+04 cfu/mL, respectively. CONCLUSION: Genomic analyses revealed that staphylococcal exotoxins are widely distributed and highly conserved among transfusion-relevant S. aureus isolates. Furthermore, SEs are significantly upregulated in PCs and detected at 30 h of PC storage. Therefore, bacterial toxin detection could supplement mitigation strategies to enhance PC safety.


Assuntos
Enterotoxinas , Infecções Estafilocócicas , Humanos , Enterotoxinas/genética , Enterotoxinas/metabolismo , Staphylococcus aureus/genética , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia
5.
Br J Nurs ; 31(17): 880-885, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36149420

RESUMO

Bloodstream infections associated with vascular access procedures pose a serious risk to patients that can be reduced by better standards of aseptic technique. The objectives of this roundtable of experts were to achieve a consensus on how to improve skin antisepsis in hospital, improve training, competency, compliance and consistency in skin antisepsis, review the role of devices in improving skin antisepsis, identify methods to improve skin antisepsis integrated with the Aseptic Non Touch Technique (ANTT®) approach, and identify challenges to the implementation of the panel's recommendations. Recommendations include using MHRA-licensed 2% chlorhexidine gluconate in 70% isopropyl alcohol solution with bidirectional strokes for up to 30 seconds, then leaving the skin to air dry for 30 seconds; using the ANTT Clinical Practice Framework and terminology as the standard for skin antisepsis training and practice; standardised ANTT and skin antisepsis education with 3-yearly competency assessments for all UK health professionals; and more research to address the evidence gap on transmission of infection after skin antisepsis.


Assuntos
Anti-Infecciosos Locais , Sepse , 2-Propanol , Anti-Infecciosos Locais/uso terapêutico , Antissepsia/métodos , Clorexidina/uso terapêutico , Humanos , Infecção da Ferida Cirúrgica
6.
Vox Sang ; 117(8): 983-988, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35412655

RESUMO

BACKGROUND AND OBJECTIVES: Bacterial contamination of platelet components (PCs) poses a safety challenge for transfusion patients. Despite mitigation interventions, the residual risk of transfusion-transmitted bacterial infections remains predominant. PC safety can be improved either by pathogen reduction or by implementation of bacterial detection methods. Detection methodologies include culture methods and rapid detection methods. The current review focuses on currently available rapid detection methods. MATERIALS AND METHODS: We reviewed published manuscripts since 2000 on rapid bacterial detection methods used for PC screening with result determination within 4 h. Methods meeting this criterion included Verax PGDprime, BacTx and nucleic amplification testing. The analytical and diagnostic sensitivity and specificity of these systems were assessed. RESULTS: The analytical sensitivity between the different detection methods ranged between 50 and 100,000 CFU/ml. The sample volume used by these testing systems varies between 0.5 and 1.0 ml of PCs. A delay of at least 48 h before sampling enhances detectability. All rapid detection methods generate results in a timely manner, allowing testing to be performed before transfusion with optimal sensitivity. CONCLUSION: Rapid detection methods improve PC safety regarding bacterial contamination. The assays are optimal for rapidly growing bacteria, which are more likely to cause septic transfusion reactions in patients. Because of the reduced diagnostic sensitivity, the sample collection should be late in shelf-life and ideally just before transfusion. The major benefit of these methods is that the test result can be obtained before releasing PCs for transfusion or to be used in combination with other screening methods applied early during PC storage.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Reação Transfusional , Bactérias , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/prevenção & controle , Plaquetas/microbiologia , Transfusão de Sangue , Humanos , Transfusão de Plaquetas/efeitos adversos , Reação Transfusional/etiologia
7.
Vox Sang ; 117(5): 647-655, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178718

RESUMO

In 2014, the bacterial subgroup of the Transfusion-Transmitted Infectious Diseases working party of ISBT published a review on the International Experience of Bacterial Screen Testing of Platelet Components (PCs) with an Automated Microbial Detection System. The purpose of this review, which is focused on publications on or after 2014, is to summarize recent experiences related to bacterial contamination of PCs and the use of an automated culture method to safeguard the blood supply. We first reviewed septic transfusion reactions after PC transfusion as reported in national haemovigilance systems along with a few reports from various countries on bacterial contamination of blood products. Next, we reviewed PC automated culture protocols employed by national blood services in the United Kingdom, Australia, Canada and large blood collection organization and hospital transfusion services in the United States. Then, we acknowledged the limitations of currently available culture methodologies in abating the risks of transfusion-transmitted bacterial infection, through a review of case reports. This review was neither meant to be critical of the literature reviewed nor meant to identify or recommend a best practice. We concluded that significant risk reduction can be achieved by one or a combination of more than one strategy. No one approach is feasible for all institutions worldwide. In selecting strategies, institutions should consider the possible impact on platelet components availability and entertain a risk-based decision-making approach that accounts for operational, logistical and financial factors.


Assuntos
Infecções Bacterianas , Reação Transfusional , Bactérias , Plaquetas/microbiologia , Segurança do Sangue , Transfusão de Sangue , Humanos , Transfusão de Plaquetas , Estados Unidos
8.
Vox Sang ; 117(3): 328-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34346087

RESUMO

BACKGROUND AND OBJECTIVES: Frozen plasma (FP) is thawed prior to transfusion and stored for ≤5 days at 1-6°C. The effect of temperature excursions on the quality and safety of thawed plasma during 5-day storage was determined. MATERIALS AND METHODS: Four plasma units were pooled, split and stored at ≤-18°C for ≤90 days. Test units T30 and T60 were exposed to 20-24°C (room temperature [RT]) for 30 or 60 min, respectively, on days 0 and 2 of storage. Negative and positive control units remained refrigerated or at RT for 5 days, respectively. On Day 5, test units were exposed once to RT for 5 h. Quality assays included stability of coagulation factors FV, FVII, FVIII, fibrinogen and prothrombin time. Bacterial growth was performed in units inoculated with ~1 CFU/ml or ~100 CFU/ml of Serratia liquefaciens, Pseudomonas putida, Pseudomonas aeruginosa or Staphylococcus epidermidis on Day 0. RESULTS: Testing results of all quality parameters were comparable between T30 and T60 units (p < 0.05). Serratia liquefaciens proliferated in cold-stored plasma, while P. putida showed variable viability. Serratia epidermidis and P. aeruginosa survived but did not grow in cold-stored plasma. Positive and negative controls showed expected results. Overall, no statistical differences in bacterial concentration between T30 and T60 units were observed (p < 0.05). CONCLUSION: Multiple RT exposures for 30 or 60 min do not affect the stability of coagulation factors or promote bacterial growth in thawed plasma stored for 5 days. It is therefore safe to expose thawed plasma to uncontrolled temperatures for limited periods of 60 min.


Assuntos
Preservação de Sangue , Criopreservação , Fatores de Coagulação Sanguínea , Preservação de Sangue/métodos , Criopreservação/métodos , Congelamento , Humanos , Plasma
9.
Microbiol Resour Announc ; 10(45): e0084021, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761952

RESUMO

We present the genome sequence of Staphylococcus aureus CI/BAC/25/13/W, which was isolated in 2013 as a contaminant of a platelet concentrate with abnormal clotting at the National Health Service Blood and Transplant. Assessment of the genome sequence showed the presence of one chromosome (2,719,347 bp) and one plasmid (1,533 bp).

10.
Microbiol Resour Announc ; 10(45): e0084121, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761954

RESUMO

We report the genome sequence of Staphylococcus aureus PS/BAC/169/17/W, which was isolated in 2017 from a contaminated platelet concentrate at the National Health Service Blood and Transplant. Assessment of the genome sequence of this strain showed the presence of a 2,753,746-bp chromosome and a plasmid of 2,762 bp.

11.
Microbiol Resour Announc ; 10(35): e0057721, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472978

RESUMO

We present the genome sequence of Staphylococcus aureus strain PS/BAC/317/16/W, which was isolated from contaminated platelet concentrates by the National Health Service Blood and Transplant in England (2017). Genome sequence analysis revealed the presence of one chromosome (2,665,983 bp) and two plasmids (4,265 bp and 2,921 bp) in this strain.

12.
Vox Sang ; 116(4): 416-424, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33616238

RESUMO

BACKGROUND AND OBJECTIVES: The inactivation capabilities of the two current commercially available pathogen inactivation (PI) systems for platelet components (PC), Mirasol and Intercept, were investigated by determination of the absence of viable bacteria at the end of shelf life by testing the entire contents of the PC by enrichment culture (terminal sterility). METHODS: A pool-and-split method was used, with two treated units and one untreated control per inoculum concentration. Pairs of PC bags were inoculated with a single bacterial species. Three concentrations (n = 2 per concentration), which incremented tenfold, were tested initially based on published data from the manufacturer. Dependent on these results, the concentrations subsequently tested were either increased or decreased until the inactivation capability of the system was derived. Bacterial count was determined post-spiking, immediately prior to treatment (2 h from spiking), immediately after treatment and at the end of shelf life (day seven). Enrichment culture was performed immediately prior to treatment, after treatment and at the end of shelf life. RESULTS: The inactivation capabilities, in CFU/ml, of Intercept and Mirasol, respectively, at the end of PC shelf life were as follows: Staphylococcus aureus ≥ 107 , <101 ; Staphylococcus epidermidis ≥106 , <102 ; Klebsiella pneumoniae 105 , <101 ; Streptococcus bovis ≥107 , 101 , Escherichia coli ≥106 , <101 ; Streptococcus pneumoniae ≥106 , 103 ; Streptococcus mitis ≥107 , 101 ; Listeria monocytogenes ≥107 , 101 ; Streptococcus dysgalactiae ≥107 , <101 ; Serratia marcescens 103 , <101 ; Pseudomonas aeruginosa 103 , Mirasol not tested; and Bacillus cereus < 102 , Mirasol not tested. CONCLUSION: The inactivation capability of Intercept was greater than that of Mirasol. Inactivation capability (by terminal sterility) is the most meaningful measure to evaluate a PI system for bacteria, rather than logarithmic reduction assessed immediately after treatment by plate count. PI offers a possible alternative to bacterial screening if treatment is performed at an appropriate time dependent on the inactivation capabilities of the system.


Assuntos
Bactérias/efeitos dos fármacos , Plaquetas/microbiologia , Segurança do Sangue , Contaminação de Medicamentos/prevenção & controle , Transfusão de Plaquetas/métodos , Escherichia coli , Humanos , Klebsiella pneumoniae , Listeria monocytogenes , Pseudomonas aeruginosa , Serratia marcescens , Staphylococcus aureus , Staphylococcus epidermidis , Streptococcus , Streptococcus bovis , Streptococcus mitis , Streptococcus pneumoniae
13.
Vox Sang ; 116(6): 692-701, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33341965

RESUMO

BACKGROUND AND OBJECTIVES: Red blood cell concentrates (RBCC) are susceptible to bacterial contamination despite cold storage. A reliable evaluation of strategies to minimize the risk of RBCC-associated bacterial transmission requires the use of suitable reference bacteria. Already existing Transfusion-Relevant Bacteria Reference Strains (TRBRS) for platelet concentrates fail to grow in RBCC. Consequently, the ISBT TTID, Working Party, Bacterial Subgroup, conducted an international study on TRBRS for RBCC. MATERIALS AND METHODS: Six bacterial strains (Listeria monocytogenes PEI-A-199, Serratia liquefaciens PEI-A-184, Serratia marcescens PEI-B-P-56, Pseudomonas fluorescens PEI-B-P-77, Yersinia enterocolitica PEI-A-105, Yersinia enterocolitica PEI-A-176) were distributed to 15 laboratories worldwide for enumeration, identification, and determination of growth kinetics in RBCC at days 7, 14, 21, 28, 35 and 42 of storage after low-count spiking (10-25 CFU/RBCC). RESULTS: Bacterial proliferation in RBCC was obtained for most strains, except for S. marcescens, which grew only at 4 of 15 laboratories. S. liquefaciens, S. marcescens, P. fluorescens and the two Y. enterocolitica strains reached the stationary phase between days 14 and 21 of RBCC storage with a bacterial concentration of approximately 109  CFU/ml. L. monocytogenes displayed slower growth kinetics reaching 106 -107  CFU/ml after 42 days. CONCLUSION: The results illustrate the importance of conducting comprehensive studies to establish well-characterized reference strains, which can be a tool to assess strategies and methods used to ameliorate blood safety. The WHO Expert Committee on Biological Standardization adopted the five successful strains as official RBCC reference strains. Our study also highlights the relevance of visual inspection to interdict contaminated RBC units.


Assuntos
Bactérias , Transfusão de Sangue , Eritrócitos , Bactérias/isolamento & purificação , Segurança do Sangue , Contagem de Eritrócitos , Humanos , Valores de Referência
14.
J Nurs Educ ; 59(3): 154-157, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32130417

RESUMO

BACKGROUND: The U.S. health care system is poorly designed to meet the needs of patients at the end of life (EOL) and their families. Nursing students often have reported feeling inadequate to provide EOL care. METHOD: Following an EOL simulation, reflective journals were collected from junior and senior nursing students and analyzed for themes using qualitative content analysis. The condensed meaning units were abstracted into codes based on Carper's fundamental patterns of knowing. RESULTS: Thirty-one junior and senior nursing students (mean age, 21.04 ± 0.52 years, 96.2% female) in a baccalaureate program participated in the study. The broad themes of student reflections included empirics (theoretical or natural historical) aesthetics (transformative nursing action), personal (interpersonal process of nurse-patient interaction), and ethics (emotion influences actions). CONCLUSION: Student perception and participation in all roles contributes to the gestalt of the experience of a highly emotional EOL simulation for both students and faculty. [J Nurs Educ. 2020;59(3):154-157.].


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Estudantes de Enfermagem/psicologia , Assistência Terminal , Feminino , Humanos , Masculino , Adulto Jovem
15.
Vox Sang ; 114(3): 189-197, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30834556

RESUMO

BACKGROUND AND OBJECTIVES: In the UK, a significant proportion of red cell units is discarded due to the 30-min rule governing out of temperature control. Studies have shown that repeated warming to ambient temperature has little impact on red cell quality or bacterial growth. We aimed to validate extension of the rule to 60 minutes by investigation of repeated same, and different, day exposures on bacterial growth. MATERIALS AND METHODS: Red cell units were seeded individually at 100-1000 cfu/ml with Yersinia enterocolitica, Serratia liquefaciens, Pseudomonas putida, Staphylococcus epidermidis, Enterobacter cloacae and Bacillus cereus. Test units were exposed to 30°C for 30 or 60 min on a single occasion at days 15, 17 and 21, or thrice on day 15 of a 35-day storage period. A 10-fold increase in bacterial counts in tests versus controls maintained in cold storage was considered indicative of significant bacterial proliferation. RESULTS: Exposure of units to 30°C for up to 60 min had no substantial impact on the growth of bacteria and all mesophiles declined steadily in tests and controls. Only P. putida showed a near significant elevation in count on exposure for 60 min at day 35. CONCLUSIONS: Extension of the out of temperature rule for red cells to 60 min will potentially not compromise patient safety, although exposures to ambient temperatures should be minimized. Units returned to storage must not be reissued for at least 6 hours and not be exposed to ambient temperatures on more than three occasions.


Assuntos
Preservação de Sangue/métodos , Criopreservação/métodos , Eritrócitos/microbiologia , Preservação de Sangue/normas , Criopreservação/normas , Humanos , Guias de Prática Clínica como Assunto , Pseudomonas putida/patogenicidade , Serratia liquefaciens/patogenicidade , Staphylococcus epidermidis/patogenicidade , Temperatura
16.
Eur J Cardiothorac Surg ; 52(5): 895-900, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605496

RESUMO

OBJECTIVES: Surgeons needing human cardiovascular tissue for implantation in their patients are confronted with cardiovascular tissue banks that use different methods to identify and decontaminate micro-organisms. To elucidate these differences, we compared the quality of processing methods in 20 tissue banks and 1 reference laboratory. We did this to validate the results for accepting or rejecting tissue. We included the decontamination methods used and the influence of antibiotic cocktails and residues with results and controls. The minor details of the processes were not included. METHODS: To compare the outcomes of microbiological testing and decontamination methods of heart valve allografts in cardiovascular tissue banks, an international quality round was organized. Twenty cardiovascular tissue banks participated in this quality round. The quality round method was validated first and consisted of sending purposely contaminated human heart valve tissue samples with known micro-organisms to the participants. The participants identified the micro-organisms using their local decontamination methods. RESULTS: Seventeen of the 20 participants correctly identified the micro-organisms; if these samples were heart valves to be released for implantation, 3 of the 20 participants would have decided to accept their result for release. Decontamination was shown not to be effective in 13 tissue banks because of growth of the organisms after decontamination. Articles in the literature revealed that antibiotics are effective at 36°C and not, or less so, at 2-8°C. The decontamination procedure, if it is validated, will ensure that the tissue contains no known micro-organisms. CONCLUSIONS: This study demonstrates that the quality round method of sending contaminated tissues and assessing the results of the microbiological cultures is an effective way of validating the processes of tissue banks. Only when harmonization, based on validated methods, has been achieved, will surgeons be able to fully rely on the methods used and have confidence in the consistent sterility of the tissue grafts. Tissue banks should validate their methods so that all stakeholders can trust the outcomes.


Assuntos
Valvas Cardíacas , Bancos de Tecidos , Transplantes , Antibacterianos , Descontaminação , Transplante de Coração , Valvas Cardíacas/microbiologia , Valvas Cardíacas/fisiologia , Humanos , Transplante Homólogo , Transplantes/microbiologia , Transplantes/fisiologia , Transplantes/normas
17.
Transfusion ; 57(5): 1122-1131, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28425610

RESUMO

BACKGROUND: Bacterial contamination of blood components remains a major cause of sepsis in transfusion medicine. Between 2006 and 2010 in the 5 years before the introduction of bacterial screening of platelet (PLT) components by National Health Service Blood and Transplant (NHSBT), seven cases of PLT component-associated transmission of bacterial infection were recorded for 10 patients, three of which were fatal. STUDY DESIGN AND METHODS: Sampling of individual PLT components was undertaken at 36 to 48 hours after donation and tested in the BacT/ALERT system with 8 mL inoculated into each of aerobic and anaerobic culture bottles. Bottles were incubated until the end of the 7-day shelf life and initial reactive bottles were examined for contamination. Bacterial screened time-expired PLTs were tested as in the screen method. RESULTS: From February 2011 to September 2015, a total of 1,239,029 PLT components were screened. Initial-reactive, confirmed-positive, and false-positive rates were 0.37, 0.03, and 0.19%, respectively. False-negative cultures, all with Staphylococcus aureus, occurred on four occasions; three were visually detected before transfusion and one confirmed transmission resulted in patient morbidity. The NHSBT screening protocol effectively reduced the number of clinically adverse transfusion transmissions by 90% in this reporting period, compared to a similar time period before implementation. Delayed testing of 4515 time-expired PLT units after screening revealed no positives. CONCLUSION: The implementation of bacterial screening of PLT components with the NHSBT BacT/ALERT protocol was an effective risk reduction measure and increased the safety of the blood supply.


Assuntos
Infecções Bacterianas/prevenção & controle , Plaquetas/microbiologia , Transfusão de Plaquetas/efeitos adversos , Infecções Bacterianas/transmissão , Técnicas Bacteriológicas/métodos , Armazenamento de Sangue/métodos , Humanos , Programas Nacionais de Saúde , Plaquetoferese/normas , Comportamento de Redução do Risco , Staphylococcus aureus/isolamento & purificação , Fatores de Tempo
18.
Transfusion ; 55(9): 2104-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013691

RESUMO

BACKGROUND: To increase blood safety, various procedures are currently implemented, including donor selection, optimized donor arm disinfection, and diversion. In addition, pathogen inactivation (PI) techniques can be used for platelets (PLTs) and plasma concentrates. STUDY DESIGN AND METHODS: This study investigated the clinical efficacy of an inactivation technique for different blood components at two time points (12 and 35.5 hr). Eight transfusion-relevant bacterial strains were spiked at two different concentrations (100 and 1000 colony-forming units [CFUs]/bag) into whole blood (WB), apheresis PLTs (APs), and buffy coat (BC)-derived minipool PLTs. RESULTS: The bacterial concentrations were higher than 10(6) CFUs/mL within 24 hours after spiking depending on the particular bacterial strain. PI was absolute for all of the APs performed 12 hours after inoculation, but the bacterial strains of Klebsiella pneumoniae and Bacillus cereus were not completely inactivated in WB or BC PLTs, performed 35.5 and 12 hours after inoculation, respectively. CONCLUSION: The INTERCEPT PI system was not 100% effective for high concentrations of certain K. pneumoniae strains or spore-forming B. cereus. A critical observation was that the period between blood donation and inactivation needs to be minimal to enable efficient PI. In the case where PI cannot be performed immediately after preparation, a combination of a PI technology after the production of blood components with a rapid bacterial screen test on Day 4 or 5 after donation may offer a solution to further prevent the risk of bacterial transmission by transfusion.


Assuntos
Bacillus cereus , Segurança do Sangue/métodos , Desinfecção/métodos , Seleção do Doador/métodos , Klebsiella pneumoniae , Viabilidade Microbiana , Plaquetas/microbiologia , Humanos , Plasma/microbiologia
19.
Transfus Med Rev ; 28(2): 61-71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636779

RESUMO

The BacT/ALERT microbial detection system (bioMerieux, Inc, Durham, NC) is in routine use in many blood centers as a prerelease test for platelet collections. Published reports document wide variation in practices and outcomes. A systematic review of the English literature was performed to describe publications assessing the use of the BacT/ALERT culture system on platelet collections as a routine screen test of more than 10000 platelet components. Sixteen publications report the use of confirmatory testing to substantiate initial positive culture results but use varying nomenclature to classify the results. Preanalytical and analytical variables that may affect the outcomes differ widely between centers. Incomplete description of protocol details complicates comparison between sites. Initial positive culture results range from 539 to 10606 per million (0.054%-1.061%) and confirmed positive from 127 to 1035 per million (0.013%-0.104%) donations. False-negative results determined by outdate culture range from 662 to 2173 per million (0.066%-0.217%) and by septic reactions from 0 to 66 per million (0%-0.007%) collections. Current culture protocols represent pragmatic compromises between optimizing analytical sensitivity and ensuring the timely availability of platelets for clinical needs. Insights into the effect of protocol variations on outcomes are generally restricted to individual sites that implement limited changes to their protocols over time. Platelet manufacturers should reassess the adequacy of their BacT/ALERT screening protocols in light of the growing international experience and provide detailed documentation of all variables that may affect culture outcomes when reporting results. We propose a framework for a standardized nomenclature for reporting of the results of BacT/ALERT screening.


Assuntos
Infecções Bacterianas/diagnóstico , Plaquetas/microbiologia , Contagem de Colônia Microbiana/instrumentação , Contagem de Colônia Microbiana/métodos , Algoritmos , Automação , Infecções Bacterianas/prevenção & controle , Bancos de Sangue , Preservação de Sangue/métodos , Contagem de Colônia Microbiana/normas , Reações Falso-Positivas , Humanos , Cooperação Internacional , Reprodutibilidade dos Testes
20.
Transfusion ; 54(3 Pt 2): 870-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23701338

RESUMO

BACKGROUND: Culture-based systems are currently the preferred means for bacterial screening of platelet (PLT) concentrates. Alternative bacterial detection techniques based on nucleic acid amplification have also been developed but these have yet to be fully evaluated. In this study we evaluate a novel 16S rDNA polymerase chain reaction (PCR) assay and compare its performance with automated culture. STUDY DESIGN AND METHODS: A total of 2050 time-expired, 176 fresh, and 400 initial-reactive PLT packs were tested by real-time PCR using broadly reactive 16S primers and a "universal" probe (TaqMan, Invitrogen). PLTs were also tested using a microbial detection system (BacT/ALERT, bioMérieux) under aerobic and anaerobic conditions. RESULTS: Seven of 2050 (0.34%) time-expired PLTs were found repeat reactive by PCR on the initial nucleic acid extract but none of these was confirmed positive on testing frozen second aliquots. BacT/ALERT testing also failed to confirm any time-expired PLTs positive on repeat testing, although 0.24% were reactive on the first test. Three of the 400 "initial-reactive" PLT packs were found by both PCR and BacT/ALERT to be contaminated (Escherichia coli, Listeria monocytogenes, and Streptococcus vestibularis identified) and 14 additional packs were confirmed positive by BacT/ALERT only. In 13 of these cases the contaminating organisms were identified as anaerobic skin or oral commensals and the remaining pack was contaminated with Streptococcus pneumoniae. CONCLUSION: These results demonstrate that the 16S PCR assay is less sensitive than BacT/ALERT and inappropriate for early testing of concentrates. However, rapid PCR assays such as this may be suitable for a strategy of late or prerelease testing.


Assuntos
Azidas/química , Plaquetas/citologia , DNA Ribossômico/química , Reação em Cadeia da Polimerase/métodos , Plaquetas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA