Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(2): e16114, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462151

RESUMO

PREMISE: The long-term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered "extremophiles," lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole-ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. METHODS: We examined the causes of this warming-induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. RESULTS: Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts ("bleaching") and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water-holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within-thallus photobiont communities shifted in composition toward greater diversity. CONCLUSIONS: The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.


Assuntos
Líquens , Líquens/metabolismo , Ecossistema , Carbono/metabolismo , Simbiose , Plantas
2.
Plant Physiol ; 188(2): 941-954, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850211

RESUMO

Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Rhizobium/genética , Simbiose/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Micorrizas/genética , Micorrizas/fisiologia , Rhizobium/fisiologia
3.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32047609

RESUMO

Intimate interactions between photosynthetic and non-photosynthetic organisms require the orchestrated transfer of ions and metabolites between species. We review recent progress in identifying and characterizing the transport proteins involved in five mutualistic symbiotic interactions: lichens, Azolla-cyanobacteria, ectomycorrhiza, endomycorrhiza, and rhizobia-legumes. This review focuses on transporters for nitrogen and carbon and other solutes exchanged in the interactions. Their predicted functions are evaluated on the basis of their transport mechanism and prevailing transmembrane gradients of H + and transported substrates. The symbiotic interactions are presented in the assumed order from oldest to most recently evolved.


Assuntos
Cianobactérias/metabolismo , Fabaceae/microbiologia , Líquens/metabolismo , Micorrizas/metabolismo , Rhizobium/metabolismo , Fixação de Nitrogênio , Simbiose
4.
mBio ; 10(4)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311883

RESUMO

Patient outcomes during infection are due to a complex interplay between the quality of medical care, host immunity factors, and the infecting pathogen's characteristics. To probe the influence of pathogen genotype on human survival, immune response, and other parameters of disease, we examined Cryptococcus neoformans isolates collected during the Cryptococcal Optimal Antiretroviral Therapy (ART) Timing (COAT) Trial in Uganda. We measured human participants' survival, meningitis disease parameters, immunologic phenotypes, and pathogen in vitro growth characteristics. We compared those clinical data to whole-genome sequences from 38 C. neoformans isolates of the most frequently observed sequence type (ST), ST93, in our Ugandan participant population and to sequences from an additional 18 strains of 9 other sequence types representing the known genetic diversity within the Ugandan Cryptococcus clinical isolates. We focused our analyses on 652 polymorphisms that were variable among the ST93 genomes, were not in centromeres or extreme telomeres, and were predicted to have a fitness effect. Logistic regression and principal component analysis identified 40 candidate Cryptococcus genes and 3 hypothetical RNAs associated with human survival, immunologic response, or clinical parameters. We infected mice with 17 available KN99α gene deletion strains for these candidate genes and found that 35% (6/17) directly influenced murine survival. Four of the six gene deletions that impacted murine survival were novel. Such bedside-to-bench translational research identifies important candidate genes for future studies on virulence-associated traits in human Cryptococcus infections.IMPORTANCE Even with the best available care, mortality rates in cryptococcal meningitis range from 20% to 60%. Disease is often due to infection by the fungus Cryptococcus neoformans and involves a complex interaction between the human host and the fungal pathogen. Although previous studies have suggested genetic differences in the pathogen impact human disease, it has proven quite difficult to identify the specific C. neoformans genes that impact the outcome of the human infection. Here, we take advantage of a Ugandan patient cohort infected with closely related C. neoformans strains to examine the role of pathogen genetic variants on several human disease characteristics. Using a pathogen whole-genome sequencing approach, we showed that 40 C. neoformans genes are associated with human disease. Surprisingly, many of these genes are specific to Cryptococcus and have unknown functions. We also show deletion of some of these genes alters disease in a mouse model of infection, confirming their role in disease. These findings are particularly important because they are the first to identify C. neoformans genes associated with human cryptococcal meningitis and lay the foundation for future studies that may lead to new treatment strategies aimed at reducing patient mortality.


Assuntos
Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/imunologia , Genoma Bacteriano , Interações Hospedeiro-Patógeno/imunologia , Animais , Criptococose/mortalidade , Cryptococcus neoformans/classificação , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Genômica/métodos , Genótipo , Humanos , Camundongos , Viabilidade Microbiana/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Virulência/genética , Fatores de Virulência/genética
5.
BMC Genomics ; 20(1): 605, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337355

RESUMO

BACKGROUND: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS: A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS: The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.


Assuntos
Ascomicetos/genética , Clorófitas/genética , Líquens/genética , Simbiose/genética , Transferência Genética Horizontal , Genoma Fúngico
6.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833336

RESUMO

Cryptococcal meningitis (CM) causes high rates of HIV-related mortality, yet the Cryptococcus factors influencing patient outcome are not well understood. Pathogen-specific traits, such as the strain genotype and degree of antigen shedding, are associated with the clinical outcome, but the underlying biology remains elusive. In this study, we examined factors determining disease outcome in HIV-infected cryptococcal meningitis patients infected with Cryptococcus neoformans strains with the same multilocus sequence type (MLST). Both patient mortality and survival were observed during infections with the same sequence type. Disease outcome was not associated with the patient CD4 count. Patient mortality was associated with higher cryptococcal antigen levels, the cerebrospinal fluid (CSF) fungal burden by quantitative culture, and low CSF fungal clearance. The virulence of a subset of clinical strains with the same sequence type was analyzed using a mouse inhalation model of cryptococcosis. We showed a strong association between human and mouse mortality rates, demonstrating that the mouse inhalation model recapitulates human infection. Similar to human infection, the ability to multiply in vivo, demonstrated by a high fungal burden in lung and brain tissues, was associated with mouse mortality. Mouse survival time was not associated with single C. neoformans virulence factors in vitro or in vivo; rather, a trend in survival time correlated with a suite of traits. These observations show that MLST-derived genotype similarities between C. neoformans strains do not necessarily translate into similar virulence either in the mouse model or in human patients. In addition, our results show that in vitro assays do not fully reproduce in vivo conditions that influence C. neoformans virulence.


Assuntos
Cryptococcus neoformans/genética , Infecções por HIV/complicações , Interações Hospedeiro-Patógeno/genética , Meningite Criptocócica/genética , Meningite Criptocócica/imunologia , Virulência/genética , Virulência/imunologia , Animais , Modelos Animais de Doenças , Variação Genética , Humanos , Meningite Criptocócica/etiologia , Camundongos
7.
Plant Cell Physiol ; 59(5): 997-1005, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444306

RESUMO

Plant ammonium transporters in the AMT/MEP/Rh (ammonium transporter/methylammonium and ammonium permease/Rhesus factor) superfamily have only been previously characterized in flowering plants (angiosperms). Plant AMT1s are electrogenic, while plant AMT2s are electroneutral, and MEP and Rh transporters in other organisms are electroneutral. We analyzed the transport function of MpAMT1;2 from the basal land plant Marchantia polymorpha, a liverwort. MpAMT1;2 was shown to localize to the plasma membrane in Marchantia gametophyte thallus by stable transformation using a C-terminal citrine fusion. MpAMT1;2 expression was studied using quantitative real-time PCR and shown to be higher when plants were N deficient and lower when plants were grown on media containing ammonium, nitrate or the amino acid glutamine. Expression in Xenopus oocytes and analysis by electrophysiology revealed that MpAMT1;2 is an electrogenic ammonium transporter with a very high affinity for ammonium (7 µM at pH 5.6 and a membrane potential of -137 mV). A conserved inhibitory phosphorylation site identified in angiosperm AMT1s is also present in all AMT1s in Marchantia. Here we show that a phosphomimetic mutation T475D in MpAMT1;2 completely inhibits ammonium transport activity. The results indicate that MpAMT1;2 may be important for ammonium uptake into cells in the Marchantia thallus.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Compostos de Amônio/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Cinética , Potenciais da Membrana , Mutação/genética , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Transporte Proteico , Especificidade por Substrato
8.
Front Plant Sci ; 7: 352, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27066024

RESUMO

The ammonium transporter gene family consists of three main clades, AMT, MEP, and Rh. The evolutionary history of the AMT/MEP/Rh gene family is characterized by multiple horizontal gene transfer events, gene family expansion and contraction, and gene loss; thus the gene tree for this family of transporters is unlike the organismal tree. The genomes of angiosperms contain genes for both electrogenic and electroneutral ammonium transporters, but it is not clear how far back in the land plant lineage electrogenic ammonium transporters occur. Here, we place Marchantia polymorpha ammonium transporters in the AMT/MEP/Rh phylogeny and we show that AMTs from the liverwort M. polymorpha are electrogenic. This information suggests that electrogenic ammonium transport evolved at least as early as the divergence of bryophytes in the land plant lineage.

9.
Antimicrob Agents Chemother ; 59(12): 7197-204, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26324276

RESUMO

Cryptococcal antigen screening is recommended among people living with AIDS when entering HIV care with a CD4 count of <100 cells/µl, and preemptive fluconazole monotherapy treatment is recommended for those with subclinical cryptococcal antigenemia. Yet, knowledge is limited of current antimicrobial resistance in Africa. We examined antifungal drug susceptibility in 198 clinical isolates collected from Kampala, Uganda, between 2010 and 2014 using the CLSI broth microdilution assay. In comparison with two previous studies from 1998 to 1999 that reported an MIC50 of 4 µg/ml and an MIC90 of 8 µg/ml prior to widespread human fluconazole and agricultural azole fungicide usage, we report an upward shift in the fluconazole MIC50 to 8 µg/ml and an MIC90 value of 32 µg/ml, with 31% of isolates with a fluconazole MIC of ≥ 16 µg/ml. We observed an amphotericin B MIC50 of 0.5 µg/ml and an MIC90 of 1 µg/ml, of which 99.5% of isolates (197 of 198 isolates) were still susceptible. No correlation between MIC and clinical outcome was observed in the context of amphotericin B and fluconazole combination induction therapy. We also analyzed Cryptococcus susceptibility to sertraline, with an MIC50 of 4 µg/ml, suggesting that sertraline is a promising oral, low-cost, available, novel medication and a possible alternative to fluconazole. Although the CLSI broth microdilution assay is ideal to standardize results, limit human bias, and increase assay capacity, such assays are often inaccessible in low-income countries. Thus, we also developed and validated an assay that could easily be implemented in a resource-limited setting, with similar susceptibility results (P = 0.52).


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Coinfecção , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Quimioterapia Combinada , Feminino , HIV/isolamento & purificação , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Masculino , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/imunologia , Meningite Criptocócica/microbiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Resultado do Tratamento , Uganda
10.
mBio ; 5(1): e01087-13, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24496797

RESUMO

UNLABELLED: Cryptococcus neoformans is the leading cause of fungal meningitis worldwide. Previous studies have characterized the cryptococcal transcriptome under various stress conditions, but a comprehensive profile of the C. neoformans transcriptome in the human host has not been attempted. Here, we extracted RNA from yeast cells taken directly from the cerebrospinal fluid (CSF) of two AIDS patients with cryptococcal meningitis prior to antifungal therapy. The patients were infected with strains of C. neoformans var. grubii of molecular type VNI and VNII. Using RNA-seq, we compared the transcriptional profiles of these strains under three environmental conditions (in vivo CSF, ex vivo CSF, and yeast extract-peptone-dextrose [YPD]). Although we identified a number of differentially expressed genes, single nucleotide variants, and novel genes that were unique to each strain, the overall expression patterns of the two strains were similar under the same environmental conditions. Specifically, yeast cells obtained directly from each patient's CSF were more metabolically active than cells that were incubated ex vivo in CSF. Compared with growth in YPD, some genes were identified as significantly upregulated in both in vivo and ex vivo CSF, and they were associated with genes previously recognized for contributing to pathogenicity. For example, genes with known stress response functions, such as RIM101, ENA1, and CFO1, were regulated similarly in the two clinical strains. Conversely, many genes that were differentially regulated between the two strains appeared to be transporters. These findings establish a platform for further studies of how this yeast survives and produces disease. IMPORTANCE: Cryptococcus neoformans, an environmental, opportunistic yeast, is annually responsible for an estimated million cases of meningitis and over 600,000 deaths, mostly among HIV-infected patients in sub-Saharan Africa and Asia. Using RNA-seq, we analyzed the gene expression of two strains of C. neoformans obtained from the cerebrospinal fluid (CSF) of infected patients, thus creating a comprehensive snapshot of the yeasts' genetic responses within the human body. By comparing the gene expression of each clinical strain under three conditions (in vivo CSF, ex vivo CSF, and laboratory culture), we identified genes and pathways that were uniquely regulated by exposure to CSF and likely crucial for the survival of C. neoformans in the central nervous system. Further analyses revealed genetic diversity between the strains, providing evidence for cryptococcal evolution and strain specificity. This ability to characterize transcription in vivo enables the elucidation of specific genetic responses that promote disease production and progression.


Assuntos
Cryptococcus neoformans/genética , Meningite Criptocócica/microbiologia , Transcriptoma , Líquido Cefalorraquidiano/microbiologia , Cryptococcus neoformans/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Infecções por HIV/complicações , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação
11.
BMC Genomics ; 14: 225, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557360

RESUMO

BACKGROUND: Horizontal gene transfer has shaped the evolution of the ammonium transporter/ammonia permease gene family. Horizontal transfers of ammonium transporter/ammonia permease genes into the fungi include one transfer from archaea to the filamentous ascomycetes associated with the adaptive radiation of the leotiomyceta. The horizontally transferred gene has subsequently been lost in most of the group but has been selectively retained in lichenizing fungi. However, some groups of lichens appear to have secondarily lost the archaeal ammonium transporter. Definitive assessment of gene loss can only be made via whole genome sequencing. RESULTS: Ammonium transporter/ammonia permease gene sequences were recovered from the assembled genomes of eight lichenizing fungi in key clades including the Caliciales, the Peltigerales, the Ostropomycetidae, the Acarosporomycetidae, the Verrucariales, the Arthoniomycetidae and the Lichinales. The genes recovered were included in a refined phylogenetic analysis. The hypothesis that lichens symbiotic with a nitrogen-fixing cyanobacterium as a primary photobiont or lichens living in high nitrogen environments lose the plant-like ammonium transporters was upheld, but did not account for additional losses of ammonium transporters/ammonia permeases in the lichens from the Acarosporomycetidae, Chaetotheriomycetes and Arthoniomycetes. In addition, the four ammonium transporter/ammonia permease genes from Cladonia grayi were shown to be functional by expressing the lichen genes in a strain of Saccharomyces cerevisiae in which all three native ammonium transporters were deleted, and assaying for growth on limiting ammonia as a sole nitrogen source. CONCLUSIONS: Given sufficient coverage, next-generation sequencing technology can definitively address the loss of a gene in a genome when using environmental DNA isolated from lichen thalli collected from their natural habitats. Lichen-forming fungi have been losing ammonium transporters/ammonia permease genes at a slower rate than the most closely related non-lichenized lineages. These horizontally transferred genes in the Cladonia grayi genome encode functional ammonium transporters/ammonia permeases.


Assuntos
Genes Fúngicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Líquens/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ecossistema , Transferência Genética Horizontal , Líquens/efeitos dos fármacos , Líquens/crescimento & desenvolvimento , Líquens/fisiologia , Nitrogênio/farmacologia , Especificidade da Espécie , Simbiose
12.
Mol Biol Evol ; 29(1): 51-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21680869

RESUMO

The proteins of the ammonium transporter/methylammonium permease/Rhesus factor family (AMT/MEP/Rh family) are responsible for the movement of ammonia or ammonium ions across the cell membrane. Although it has been established that the Rh proteins are distantly related to the other members of the family, the evolutionary history of the AMT/MEP/Rh family remains unclear. Here, we use phylogenetic analysis to infer the evolutionary history of this family of proteins across 191 genomes representing all main lineages of life and to provide a new classification of the proteins in this family. Our phylogenetic analysis suggests that what has heretofore been conceived of as a protein family with two clades (AMT/MEP and Rh) is instead a protein family with three clades (AMT, MEP, and Rh). We show that the AMT/MEP/Rh family illustrates two contrasting modes of gene transmission: The AMT family as defined here exhibits vertical gene transfer (i.e., standard parent-to-offspring inheritance), whereas the MEP family as defined here is characterized by several ancient independent horizontal gene transfers (HGTs). These ancient HGT events include a gene replacement during the early evolution of the fungi, which could be a defining trait for the kingdom Fungi, a gene gain from hyperthermophilic chemoautolithotrophic prokaryotes during the early evolution of land plants (Embryophyta), and an independent gain of this same gene in the filamentous ascomycetes (Pezizomycotina) that was subsequently lost in most lineages but retained in even distantly related lichenized fungi. This recircumscription of the ammonium transporters/ammonia permeases family into MEP and AMT families informs the debate on the mechanism of transport in these proteins and on the nature of the transported molecule because published crystal structures of proteins from the MEP and Rh clades may not be representative of the AMT clade. The clades as depicted in this phylogenetic study appear to correspond to functionally different groups, with AMTs and ammonia permeases forming two distinct and possibly monophyletic groups.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Cátions/genética , Evolução Molecular , Transferência Genética Horizontal , Compostos de Amônio Quaternário/metabolismo , Animais , Archaea/genética , Bactérias/genética , Proteínas de Transporte de Cátions/metabolismo , Clorófitas/genética , Eucariotos/genética , Fungos/genética , Filogenia , Rodófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA